< redhat

Virtualization with Xen and Linux

Chris Wright
chrisw@redhat.com
OSDL-Japan Linux Symposium
June 2006

mailto:chrisw@redhat.com

‘ redhat

Outline

Virtualization Overview
Xen Architecture

Xen Current Status
XenLinux upstream merge

Xen Roadmap

Note: Much of the information in this presentation comes from papers, web pages and slides found at
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

‘_ redhat

Virtualization: Why?

Server consolidation

Control physical server proliferation

Fast and easy provisioning

Provision and deploy virtual machine is agile
Hardware enablement
Secure isolation

Test and Debug

‘_ redhat

Virtualization: History

Long history
1960's IBM TSS research...1972 S/370 (VM/370)...present S/390

1972, Robert Goldberg 'Architectural Principles for Virtual Computer
Systems.' Seminal work describing esp. hardware requirements for virtual
machine.

Virtual Machine
Statistically significant number of instructions run on bare machine
Sensitive instructions trapped to VMM
Real challenge for x86 architecture ;-)
Non-privileged instruction symmetry

Memory protection

‘_ redhat

Virtualization Overview

Partitioning single OS image: Linux-Vservers, OpenVZ, Solaris Zones
Group user processes into resource containers
Hard to get strong isolation
Sensitive to QoS Crosstalk

Full platform virtualization/emulation: VMware, VirtualPC, QEMU
Run multiple unmodified guest OSes
Hard to efficiently virtualize x86

Para-virtualization: UML, Xen
Run multiple guest OSes ported to special arch

arch/i1386/mach-xen is very close to normal x86

‘_ redhat

Xen Today: Xen 3.0

Secure isolation between VMs
Resource control and QoS
Prolific guest support
Linux, FreeBSD, Solaris, NetBSD, Plan9, Netware
Both UP and SMP guests supported
Execution performance close to native
Rich hardware support
Direct device access (leverage existing driver support)
paravirtual i386, x86_64, ia64, PPC, (rumor of SPARC port being underway)
Support for hardware assisted full virtualization: HVM (VT-x and SVM), VT-i
Loadable MAC security policy for hypervisor: Chinese Wall, Type Enforcement

Live migration of VMs

‘_ redhat

Para-Virtualization in Xen

Xen provides a new architecture which is very similar to x86
Privileged instructions are ported to Xen
e.g. LIDT, HLT, load and store CR/DR, INVLPG, CLI/STI
Avoids binary rewriting
Minimize number of privilege transitions into Xen
Shared data structures: read CR2, CLI/STI
Batched operations: bulk mmu updates
Modifications to Linux are relatively simple and self-contained
Modify kernel to understand virtualized env.
Wall-clock time vs. virtual processor time
Xen provides both types of alarm timer
Expose real resource availability

Enables OS to optimise its own behaviour

Q redhat

Xen 3.0 Architecture

VMO VM1 VM2

AGP
Back-End Back-End

ACPI

Native Native
PCI Device Device Front-End

Driver Driver Device Drivers
XB6—32 Safe HW IF Event Channel
x86 64 - Al Mz - Monitc
1A64

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

PPC

VT-x
SVM
VT-i

‘_ redhat

Protection: x86 32

4GB Xen S
Kernel S
3GB
| 22
oM g’%
User U 2<
0GB

Xen reserves top of VA space

Segmentation protects Xen from
kernel

System call speed unchanged

Xen 3 now supporis PAE for >4GB
mem

‘_ redhat

Protection: x86 64

Kernel U " Large VA space makes life a lot
X S easier, but:
en o
964.947 No segment limit support
Reserved P " Need to use page-level protection to
947 protect hypervisor
User U

‘_ redhat

Protection: x86 64

Run user-space and kernel in ring 3
r3 User U using different pagetables
A Two PGD’s (PML4’s): one with

3 N . | user entries; one with user plus
r erne U kernel entries

syscall/sysret System calls require an additional
r0Ol U Xen S syscall/sysret via Xen

Per-CPU trampoline to avoid needing
GS in Xen

‘_ redhat

CPU virtualization: x86

Xen runs in ring 0 (most privileged)

Ring 1/2 for guest OS, ring 3 for user-space
#GP if guest attempts to use privileged instuction

Xen lives in top 64MB (168MB PAE) of linear address space
Andrew has patch queued to allow Linux to make room for Xen

Segmentation used to protect Xen as switching page tables too slow on
standard x86

Hypercalls jump to Xen in ring 0
Linux may install an int80 handler, Xen validates the code segment is ring 1
Direct user-space to Linux guest system calls

Interrupts are handled by Xen, Linux guest uses a lightweight event channel
mechanism

MMU virtualization: shadow vs. direct-mode

‘_ redhat

MMU Virtualization: x86 Shadow Mode

Linux guest maintains set of page tables

Xen hypervisor maintains shadow copy

Shadow copy is visible to hardware MMU

Xen propagates changes between guest PT and shadow PT

Expensive: can double page fault rates and has extra memory overhead

Simpler for guest: Can view physical memory as contiguous, no need to maintain
a mapping between guest pseudo physical memory and machine physical
memory, and needed for full virtualization

‘_ redhat

MMU Virtualization: x86 Shadow Mode

guest r_e~adi Virtual Pseudo-physical

N
= <

guest writes Guest OS

Accessed & |Updates
dirty bits

_— \N/irtual Machine

Hardware

‘_ redhat

MMU Virtualization: x86 Direct Mode

Linux guest maintains page tables that are visible to MMU
Linux guest registers pages it will use as page tables with Xen
These pages can be one of PD, PT, GDT, LDT, RW (mutually exclusive).

Once Xen has pinned a page as a PD or PT it does not need to be
revalidated, only updates to it need to be checked (writes will trap).

Linux uses hypercall to change PT base (e.g. context switch).
Xen validates page table updates before committing them.
Allows incremental updates, avoids revalidation
Validation rules applied to each PTE:
1. Guest may only map pages it owns*
2. Page table pages may only be mapped RO

Xen traps PTE updates and emulates, or ‘unhooks’ PTE page for bulk updates

‘_ redhat

MMU Virtualization: x86 Direct Mode

guest reads
-

NI .
. ~Virtual Machine
guest write& I\
.. \GuestOS

Xen VMM

Hardware

MMU

‘_ redhat

Writable Page Tables: 1 — Write Fault

guest reads

&
\/ '\%rtual Machine

first guest

we \GuestOS
\'%
page fault
___ Xen VMM
Hardware

MMU

‘_ redhat

Writable Page Tables: 2 — Emulate?

guest reads

<
\/ '\%rtual Machine

first guest

e, \GuestOS

yes

emulate?
Xen VMM

Hardware

MMU

‘. redhat

Writable Page Tables: 3 — Unhook

guest reads
AT

guestwrites Xk\%ﬂual Machine
>
.. \— Guestos

Xen VMM

Hardware

MMU

‘_ redhat

Writable Page Tables: 4 — First Use

guest reads
A

N

guest writes

'\%rtual Machine

Guest OS

v
page fault

Xen VMM

MMU

Hardware

‘_ redhat

Writable Page Tables: 5 — Re-hook

guest reads
A

'\%rtual Machine

guest writes _—
A

<~

validate

.......... \— Guestos

Xen VMM

MMU

Hardware

‘_ redhat

SMP Guests

Virtual IPl handled with Xen event channels

Important to avoid sending virtual IPl when not necessary
32 VCPUs supported on x86
Simple hotplug/unplug of VCPUs

From within VM or via control tools

Optimize one active VCPU case by binary patching spinlocks (patch is now in
upstream Linux)

‘_ redhat

I/0O Virtualization

Xen I0O-Spaces delegate guest OSes protected access to specified h/w devices
Virtual PCI configuration space
Virtual interrupts
(Need IOMMU for full DMA protection)
Devices are virtualized and exported to other VMs via Device Channels

Safe asynchronous shared memory transport built from grant tables and
event channels

‘Backend’ drivers export to ‘frontend’ drivers

Net: use normal bridging, routing, iptables

Block: export any blockk device e.g. sda4,loop0,vg3
(Infiniband / Smart NICs for direct guest |0)

‘_ redhat

Full Virtualization: HVM (VT-x, SVM)

Enable Guest OSes to be run without para-virtualization modifications
E.g. legacy Linux, Windows XP/2003

CPU provides traps for certain privileged instrs

Shadow page tables used to provide MMU virtualization

Xen provides simple platform emulation
BIOS, Ethernet (ne2k), IDE emulation

(Install paravirtualized drivers after booting for high-performance 10)

Q redhat

HVM Architecture

Guest VM (VMX) Guest VM (VMX)
(32-bit) (64-bity

Linux xen64
¥ o020
S5 g¢ Unmodified 0S Unmodified OS 3D
@ S5 0 &
2 =3/ 8 Linux xen64

i M

m m

< <

Ly 3 3

(o] { o { o

3) S
X
. g &
Native Native | b <
=
Device Device g
A) Ivao =

Control Interface Scheduler Event Channel Hypercalls
Processor Memory 1/0: PIT, APIC, PIC, IOAPIC

v Xen Hypervisor

‘_ redhat

Xen Status

Xen 3.0.0
Released January 2006
SMP support (SMP hardware and SMP guests)
Working ACPI (moved from hypervisor to dom0), Hypervisor time APIs
x86_64 (Opteron and EM64T), PAE support (>4 Gb), basic I1A64

Xen 3.0.1

Feb 1, 2006

Primarily bugfixes and code cleanups
Xen 3.0.2

April 13, 2006

HVM now supports VT and SVM

2.6.16 kernel with proper subarch support

Xen 3.0.x
Better driver domains, NUMA support, possible IDC enhancements

‘_ redhat

XenLinux Merge Status

Scope of work
i386 only
UP only
domU only
shadow mode only

Limited scope reduces size, complexity, and invasiveness of the patchset.

Community response

Useful feedback for improving the patchset that has resulted in cleanups
which are being propagated back to the xen-unstable developement tree

Some small bits have been taken by Andrew for upstream Linux

‘_ redhat

XenoLinux Merge Status — Patchset details

~35 patches, ~1.6MB
114 files changed, 13522 insertions(+), 350 deletions(-)
Creates new i386 subarch: arch/i1386/mach-xen
Updates infrastructure to allow a subarch to override default behaviour for:
Start-of-day
Segments (running in ring 1)
Descriptor table handling: GDT, LDT, IDT
Control register handling: CR0, CR1, CR2, CR3, CR4
CPUID
Interrupt handling
TLB handling
Memory and page table handling
|dle loop

‘_ redhat

XenLinux Merge Status — Patchset details

Adds core Xen functionality for:
Hypervisor interface
Time
Reboot
Event channels
Grant tables
Xenbus
Console

Frontend block and net drivers

‘_ redhat

XenLinux Merge Status — Related Work

VMI proposal from VMWare
Common binary interface layer for hypervisors

Pros: Resembles native platform, good native performance, easy to change
hypervisors without changing kernels.

Cons: Strict ABI, low-level interface may have poorer paravirt performance,
no users, requires extra glue layer (the ROM).

paravirt_ops from Rusty Russell

Common paravirt function table interface for hypervisors. Similar to VMWare
proposal with focus on standard Linux coding practices. Provides an internal
kernel API rather than forcing ABI.

Pros: Follows common conventions, draws from good aspects of VMI

Cons: Early work, still needs to be flushed out, no users

‘_ redhat

XenLinux Merge Status — Future Work

Continue to respond to feedback from LKML
Repost as ready

Cleaner patch split so that we can easily feed the non-confrontational patches to
Andrew. Much of the infrastructure changes are the same for Xen, VMI and

paravirt_ops.
Follow-on work
SMP support
Writable page tables support
domO support
Other architectures (x86_64, ia64, PPC)

‘_ redhat

Xen Roadmap

Performance and scalability
Fix any performance regressions from Xen 2.0, NUMA support
|IOMMU support
Get Xen upstream ;-)
Improved resource control
Fine grained delegations, dynamic VCPU to CPU binding
Network drivers support for S/G and TSO/UFO
HVM improvements
Shadow page table improvements
QEMU: VNC Server, USB Mouse, Virtual Framebuffer
SMP HVM guests
New I/O model for HVM guests

And much, much more. Come join in the fun!

