
	 The purpose of this document is to help developers (and their managers) work with the development

community with a minimum of frustration. It is an attempt to document how this community works in a way

which is accessible to those who are not intimately familiar with Linux kernel development (or, indeed, free

software development in general). While there is some technical material here, this is very much a process-

oriented discussion which does not require a deep knowledge of kernel programming to understand.

How to Participate in the
Linux Community
A Guide To The Kernel Development Process

by Jonathan Corbet, corbet@lwn.net

August 2008

2

1.1: Executive Summary

	 The rest of this section covers the scope of the kernel development

process and the kinds of frustrations that developers and their

employers can encounter there. There are a great many reasons

why kernel code should be merged into the official (“mainline”)

kernel, including automatic availability to users, community support

in many forms, and the ability to influence the direction of kernel

development. Code contributed to the Linux kernel must be made

available under a GPLcompatible license.

	 Section 2 introduces the development process, the kernel release

cycle, and the mechanics of the merge window. The various phases

in the patch development, review, and merging cycle are covered.

There is some discussion of tools and mailing lists. Developers

wanting to get started with kernel development are encouraged to

track down and fix bugs as an initial exercise.

 	 Section 3 covers early-stage project planning, with an emphasis

on involving the development community as soon as possible.

	 Section 4 is about the coding process; several pitfalls which

have been encountered by other developers are discussed. Some

requirements for patches are covered, and there is an introduction to

some of the tools which can help to ensure that kernel patches are

correct.

 	 Section 5 talks about the process of posting patches for review.

To be taken seriously by the development community, patches must

be properly formatted and described, and they must be sent to the

right place. Following the advice in this section should help to ensure

the best possible reception for your work.

	 Section 6 covers what happens after posting patches; the job is

far from done at that point. Working with reviewers is a crucial part of

the development process; this section offers a number of tips on how

to avoid problems at this important stage. Developers are cautioned

against assuming that the job is done when a patch is merged into

the mainline.

	 Section 7 introduces a couple of “advanced” topics: managing

patches with git and reviewing patches posted by others.

	 Section 8 concludes the document with pointers to sources for

more information on kernel development.

1.2: What This Document Is About

	 The Linux kernel, at over 6 million lines of code and well over 1000

active contributors, is one of the largest and most active free software

projects in existence. Since its humble beginning in 1991, this kernel

has evolved into a best-of-breed operating system component which

runs on pocket-sized digital music players, desktop PCs, the largest

supercomputers in existence, and all types of systems in between. It

is a robust, efficient, and scalable solution for almost any situation.

	 With the growth of Linux has come an increase in the number of

developers (and companies) wishing to participate in its development.

Hardware vendors want to ensure that Linux supports their products

well, making those products attractive to Linux users. Embedded

systems vendors, who use Linux as a component in an integrated

product, want Linux to be as capable and well-suited to the task

at hand as possible. Distributors and other software vendors who

base their products on Linux have a clear interest in the capabilities,

performance, and reliability of the Linux kernel. And end users, too,

will often wish to change Linux to make it better suit their needs.

	 One of the most compelling features of Linux is that it is accessible

to these developers; anybody with the requisite skills can improve

Linux and influence the direction of its development. Proprietary

products cannot offer this kind of openness, which is a characteristic

of the free software process. But, if anything, the kernel is even more

open than most other free software projects. A typical three-month

kernel development cycle can involve over 1000 developers working

for more than 100 different companies (or for no company at all).

	 Working with the kernel development community is not especially

hard. But, that notwithstanding, many potential contributors have

experienced difficulties when trying to do kernel work. The kernel

community has evolved its own distinct ways of operating which

allow it to function smoothly (and produce a high-quality product) in

an environment where thousands of lines of code are being changed

every day. So it is not surprising that Linux kernel development

process differs greatly from proprietary development methods.

	 The kernel’s development process may come across as strange

and intimidating to new developers, but there are good reasons and

solid experience behind it. A developer who does not understand the

kernel community’s ways (or, worse, who tries to flout or circumvent

them) will have a frustrating experience in store. The development

community, while being helpful to those who are trying to learn, has

little time for those who will not listen or who do not care about the

development process.

3

	 It is hoped that those who read this document will be able to

avoid that frustrating experience. There is a lot of material here,

but the effort involved in reading it will be repaid in short order. The

development community is always in need of developers who will

help to make the kernel better; the following text should help you – or

those who work for you – join our community.

1.3: Credits

	 This document was written by Jonathan Corbet, corbet@lwn.net.

It has been improved by comments from James Berry, Alex Chiang,

Roland Dreier, Randy Dunlap, Jake Edge, Jiri Kosina, Matt Mackall,

Amanda McPherson, Andrew Morton, and Jochen Voß.

	 This work was supported by the Linux Foundation; thanks

especially to Amanda McPherson, who saw the value of this effort

and made it all happen.

1.4: The Importance Of Getting Code Into The Mainline

	 Some companies and developers occasionally wonder why they

should bother learning how to work with the kernel community and

get their code into the mainline kernel (the “mainline” being the

kernel maintained by Linus Torvalds and used as a base by Linux

distributors). In the short term, contributing code can look like an

avoidable expense; it seems easier to just keep the code separate

and support users directly. The truth of the matter is that keeping

code separate (“out of tree”) is a false economy.

	 As a way of illustrating the costs of out-of-tree code, here are

a few relevant aspects of the kernel development process; most

of these will be discussed in greater detail later in this document.

Consider:

	 •	 Code which has been merged into the mainline kernel is

available to all Linux users. It will automatically be present on all

distributions which enable it. There is no need for driver disks,

downloads, or the hassles of supporting multiple versions of

multiple distributions; it all just works, for the developer and for

the user. Incorporation into the mainline solves a large number of

distribution and support problems.

	 •	 While kernel developers strive to maintain a stable interface to

user space, the internal kernel API is in constant flux. The lack

of a stable internal interface is a deliberate design decision; it

allows fundamental improvements to be made at any time and

results in higher-quality code. But one result of that policy is that

any out-of-tree code requires constant upkeep if it is to work with

new kernels. Maintaining out-of-tree code requires significant

amounts of work just to keep that code working.

		 Code which is in the mainline, instead, does not require this

work as the result of a simple rule requiring developers to fix

any code which breaks as the result of an API change. So code

which has been merged into the mainline has significantly lower

maintenance costs.

	 •	 Beyond that, code which is in the kernel will often be improved by

other developers. Surprising results can come from empowering

your user community and customers to improve your product.

	 •	 Kernel code is subjected to review, both before and after merging

into the mainline. No matter how strong the original developer’s

skills are, this review process invariably finds ways in which

the code can be improved. Often review finds severe bugs and

security problems. This is especially true for code which has been

developed in an closed environment; such code benefits strongly

from review by outside developers. Out-of-tree code is lower-

quality code.

	 •	 Participation in the development process is your way to influence

the direction of kernel development. Users who complain from

the sidelines are heard, but active developers have a stronger

voice – and the ability to implement changes which make the

kernel work better for their needs.

	 •	 When code is maintained separately, the possibility that a third

party will contribute a different implementation of a similar feature

always exists. Should that happen, getting your code merged will

become much harder – to the point of impossibility. Then you will

be faced with the unpleasant alternatives of either (1) maintaining

a nonstandard feature out of tree indefinitely, or (2) abandoning

your code and migrating your users over to the in-tree version.

	 •	 Contribution of code is the fundamental action which makes the

whole process work. By contributing your code you can add new

functionality to the kernel and provide capabilities and examples

which are of use to other kernel developers. If you have developed

code for Linux (or are thinking about doing so), you clearly have

an interest in the continued success of this platform; contributing

code is one of the best ways to help ensure that success.

	 All of the reasoning above applies to any out-of-tree kernel code,

including code which is distributed in proprietary, binary-only form.

4

	 There are, however, additional factors which should be taken

into account before considering any sort of binary-only kernel code

distribution. These include:

	 •	 The legal issues around the distribution of proprietary kernel

modules are cloudy at best; quite a few kernel copyright holders

believe that most binary-only modules are derived products of

the kernel and that, as a result, their distribution is a violation of

the GNU General Public license (about which more will be said

below). Your author is not a lawyer, and nothing in this document

can possibly be considered to be legal advice. The true legal

status of closed-source modules can only be determined by the

courts. But the uncertainty which haunts those modules is there

regardless.

	 •	 Binary modules greatly increase the difficulty of debugging kernel

problems, to the point that most kernel developers will not even

try. So the distribution of binary-only modules will make it harder

for your users to get support from the community.

	 •	 Support is also harder for distributors of binary-only modules,

who must provide a version of the module for every distribution

and every kernel version they wish to support. Dozens of builds

of a single module can be required to provide reasonably

comprehensive coverage, and your users will have to upgrade

your module separately every time they upgrade their kernel.

	 •	 Everything that was said above about code review applies doubly

to closed-source code. Since this code is not available at all, it

cannot have been reviewed by the community and will, beyond

doubt, have serious problems.

	 Makers of embedded systems, in particular, may be tempted to

disregard much of what has been said in this section in the belief

that they are shipping a self-contained product which uses a frozen

kernel version and requires no more development after its release.

This argument misses the value of widespread code review and the

value of allowing your users to add capabilities to your product. But

these products, too, have a limited commercial life, after which a new

version must be released. At that point, venders whose code is in the

mainline and well maintained will be much better positioned to get

the new product ready for market quickly.

1.5: Licensing

	 Code is contributed to the Linux kernel under a number of

licenses, but all code must be compatible with version 2 of the GNU

General Public License (GPLv2), which is the license covering the

kernel distribution as a whole. In practice, that means that all code

contributions are covered either by GPLv2 (with, optionally, language

allowing distribution under later versions of the GPL) or the three-

clause BSD license. Any contributions which are not covered by a

compatible license will not be accepted into the kernel.

	 Copyright assignments are not required (or requested) for

code contributed to the kernel. All code merged into the mainline

kernel retains its original ownership; as a result, the kernel now has

thousands of owners.

	 One implication of this ownership structure is that any attempt

to change the licensing of the kernel is doomed to almost certain

failure. There are few practical scenarios where the agreement of

all copyright holders could be obtained (or their code removed from

the kernel). So, in particular, there is no prospect of a migration to

version 3 of the GPL in the foreseeable future.

 	 It is imperative that all code contributed to the kernel be

legitimately free software. For that reason, code from anonymous

(or pseudonymous) contributors will not be accepted. All contributors

are required to “sign off” on their code, stating that the code can

be distributed with the kernel under the GPL. Code which has not

been licensed as free software by its owner, or which risks creating

copyright-related problems for the kernel (such as code which derives

from reverse-engineering efforts lacking proper safeguards) cannot

be contributed.

	 Questions about copyright-related issues are common on Linux

development mailing lists. Such questions will normally receive no

shortage of answers, but one should bear in mind that the people

answering those questions are not lawyers and cannot provide legal

advice. If you have legal questions relating to Linux source code,

there is no substitute for talking with a lawyer who understands this

field. Relying on answers obtained on technical mailing lists is a

risky affair.

5

2: How The Development Process Works

	 Linux kernel development in the early 1990’s was a pretty loose

affair, with relatively small numbers of users and developers involved.

With a user base in the millions and with some 2,000 developers

involved over the course of one year, the kernel has since had to

evolve a number of processes to keep development happening

smoothly. A solid understanding of how the process works is required

in order to be an effective part of it.

2.1: The Big Picture

	 The kernel developers use a loosely time-based release process,

with a new major kernel release happening every two or three

months. The recent release history looks like this:

	 2.6.26	 July 13, 2008

	 2.6.25	 April 16, 2008

	 2.6.24	 January 24, 2008

	 2.6.23	 October 9, 2007

	 2.6.22	 July 8, 2007

	 2.6.21	 April 25, 2007

	 2.6.20	 February 7, 2007

	 Every 2.6.x release is a major kernel release with new features,

internal API changes, and more. A typical 2.6 release can contain over

10,000 changesets with changes to several hundred thousand lines

of code. 2.6 is thus the leading edge of Linux kernel development;

the kernel uses a rolling development model which is continually

integrating major changes.

	 A relatively straightforward discipline is followed with regard to

the merging of patches for each release. At the beginning of each

development cycle, the “merge window” is said to be open. At that

time, code which is deemed to be sufficiently stable (and which is

accepted by the development community) is merged into the mainline

kernel. The bulk of changes for a new development cycle (and all

of the major changes) will be merged during this time, at a rate

approaching 1,000 changes (“patches,” or “changesets”) per day.

	 (As an aside, it is worth noting that the changes integrated during

the merge window do not come out of thin air; they have been

collected, tested, and staged ahead of time. How that process works

will be described in detail later on).

	 The merge window lasts for two weeks. At the end of this time,

Linus Torvalds will declare that the window is closed and release the

first of the “rc” kernels. For the kernel which is destined to be 2.6.26,

for example, the release which happens at the end of the merge

window will be called 2.6.26-rc1. The – rc1 release is the signal that

the time to merge new features has passed, and that the time to

stabilize the next kernel has begun.

	 Over the next six to ten weeks, only patches which fix problems

should be submitted to the mainline. On occasion a more significant

change will be allowed, but such occasions are rare; developers who

try to merge new features outside of the merge window tend to get

an unfriendly reception.

	 As a general rule, if you miss the merge window for a given

feature, the best thing to do is to wait for the next development

cycle. (An occasional exception is made for drivers for previously-

unsupported hardware; if they touch no in-tree code, they cannot

cause regressions and should be safe to add at any time).

	 As fixes make their way into the mainline, the patch rate will slow

over time. Linus releases new – rc kernels about once a week; a

normal series will get up to somewhere between – rc6 and – rc9

before the kernel is considered to be sufficiently stable and the final

2.6.x release is made. At that point the whole process starts over

again.

	 As an example, here is how the 2.6.25 development cycle went

(all dates in 2008):

	 January 24	 2.6.24 stable release

	 February 10	 2.6.25-rc1, merge window closes

	 February 15	 2.6.25-rc2

	 February 24	 2.6.25-rc3

	 March 4	 2.6.25-rc4

	 March 9	 2.6.25-rc5

	 March 16	 2.6.25-rc6

	 March 25	 2.6.25-rc7

	 April 1	 2.6.25-rc8

	 April 11	 2.6.25-rc9

	 April 16	 2.6.25 stable release

6

	 How do the developers decide when to close the development

cycle and create the stable release? The most significant metric

used is the list of regressions from previous releases. No bugs are

welcome, but those which break systems which worked in the past

are considered to be especially serious. For this reason, patches

which cause regressions are looked upon unfavorably and are quite

likely to be reverted during the stabilization period.

	 The developers’ goal is to fix all known regressions before the

stable release is made. In the real world, this kind of perfection is

hard to achieve; there are just too many variables in a project of

this size. There comes a point where delaying the final release just

makes the problem worse; the pile of changes waiting for the next

merge window will grow larger, creating even more regressions the

next time around. So most 2.6.x kernels go out with a handful of

known regressions though, hopefully, none of them are serious.

	 Once a stable release is made, its ongoing maintenance is

passed off to the “stable team,” currently comprised of Greg Kroah-

Hartman and Chris Wright. The stable team will release occasional

updates to the stable release using the 2.6.x.y numbering scheme.

To be considered for an update release, a patch must (1) fix a

significant bug, and (2) already be merged into the mainline for the

next development kernel. Continuing our 2.6.25 example, the history

(as of this writing) is:

	 May 1	 2.6.25.1

	 May 6	 2.6.25.2

	 May 9	 2.6.25.3

	 May 15	 2.6.25.4

	 June 7	 2.6.25.5

	 June 9	 2.6.25.6

	 June 16	 2.6.25.7

	 June 21	 2.6.25.8

	 June 24	 2.6.25.9

	 Stable updates for a given kernel are made for approximately six

months; after that, the maintenance of stable releases is solely the

responsibility of the distributors which have shipped that particular

kernel.

7

2.2: The Lifecycle Of A Patch

	 Patches do not go directly from the developer’s keyboard into

the mainline kernel. There is, instead, a somewhat involved (if

somewhat informal) process designed to ensure that each patch is

reviewed for quality and that each patch implements a change which

is desirable to have in the mainline. This process can happen quickly

for minor fixes, or, in the case of large and controversial changes,

go on for years. Much developer frustration comes from a lack of

understanding of this process or from attempts to circumvent it.

	 In the hopes of reducing that frustration, this document will

describe how a patch gets into the kernel. What follows below is an

introduction which describes the process in a somewhat idealized

way.

	 A much more detailed treatment will come in later sections. The

stages that a patch goes through are, generally:

	 •	 Design. This is where the real requirements for the patch – and

the way those requirements will be met – are laid out. Design

work is often done without involving the community, but it is better

to do this work in the open if at all possible; it can save a lot of

time redesigning things later.

	 •	 Early review. Patches are posted to the relevant mailing list, and

developers on that list reply with any comments they may have.

This process should turn up any major problems with a patch if all

goes well.

	 •	 Wider review. When the patch is getting close to ready for

mainline inclusion, it will be accepted by a relevant subsystem

maintainer – though this acceptance is not a guarantee that the

patch will make it all the way to the mainline. The patch will show

up in the maintainer’s subsystem tree and into the staging trees

(described below). When the process works, this step leads to

more extensive review of the patch and the discovery of any

problems resulting from the integration of this patch with work

being done by others.

	 •	 Merging into the mainline. Eventually, a successful patch will be

merged into the mainline repository managed by Linus Torvalds.

More comments and/or problems may surface at this time; it is

important that the developer be responsive to these and fix any

issues which arise.

	 •	 Stable release. The number of users potentially affected by the

patch is now large, so, once again, new problems may arise.

	 •	 Long-term maintenance. While it is certainly possible for a

developer to forget about code after merging it, that sort of

behavior tends to leave a poor impression in the development

community. Merging code eliminates some of the maintenance

burden, in that others will fix problems caused by API changes.

But the original developer should continue to take responsibility

for the code if it is to remain useful in the longer term.

	 One of the largest mistakes made by kernel developers (or their

employers) is to try to cut the process down to a single “merging into

the mainline” step. This approach invariably leads to frustration for

everybody involved.

2.3: How Patches Get Into The Kernel

	 There is exactly one person who can merge patches into the

mainline kernel repository: Linus Torvalds. But, of the over 12,000

patches which went into the 2.6.25 kernel, only 250 (around 2%) were

directly chosen by Linus himself. The kernel project has long since

grown to a size where no single developer could possibly inspect and

select every patch unassisted. The way the kernel developers have

addressed this growth is through the use of a lieutenant system built

around a chain of trust. The kernel code base is logically broken down

into a set of subsystems: networking, specific architecture support,

memory management, video devices, etc. Most subsystems have a

designated maintainer, a developer who has overall responsibility for

the code within that subsystem.

	 These subsystem maintainers are the gatekeepers (in a loose

way) for the portion of the kernel they manage; they are the ones who

will (usually) accept a patch for inclusion into the mainline kernel.

	 Subsystem maintainers each manage their own version of the

kernel source tree, usually (but certainly not always) using the git

source management tool. Tools like git (and related tools like quilt

or mercurial) allow maintainers to track a list of patches, including

authorship information and other metadata. At any given time, the

maintainer can identify which patches in his or her repository are not

found in the mainline.

	 When the merge window opens, top-level maintainers will ask

Linus to “pull” the patches they have selected for merging from their

repositories. If Linus agrees, the stream of patches will flow up into

his repository, becoming part of the mainline kernel. The amount

of attention that Linus pays to specific patches received in a pull

operation varies. It is clear that, sometimes, he looks quite closely.

But, as a general rule, Linus trusts the subsystem maintainers to not

send bad patches upstream.

8

	 Subsystem maintainers, in turn, can pull patches from other

maintainers. For example, the networking tree is built from patches

which accumulated first in trees dedicated to network device drivers,

wireless networking, etc. This chain of repositories can be arbitrarily

long, though it rarely exceeds two or three links. Since each

maintainer in the chain trusts those managing lower-level trees, this

process is known as the “chain of trust.”

	 Clearly, in a system like this, getting patches into the kernel

depends on finding the right maintainer. Sending patches directly to

Linus is not normally the right way to go.

2.4: Staging Trees

	 The chain of subsystem trees guides the flow of patches into the

kernel, but it also raises an interesting question: what if somebody

wants to look at all of the patches which are being prepared for the

next merge window? Developers will be interested in what other

changes are pending to see whether there are any conflicts to worry

about; a patch which changes a core kernel function prototype, for

example, will conflict with any other patches which use the older form

of that function. Reviewers and testers want access to the changes in

their integrated form before all of those changes land in the mainline

kernel. One could pull changes from all of the interesting subsystem

trees, but that would be a big and error-prone job.

	 The answer comes in the form of staging trees, where subsystem

trees are collected for testing and review. The older of these

trees, maintained by Andrew Morton, is called “-mm” (for memory

management, which is how it got started). The -mm tree integrates

patches from a long list of subsystem trees; it also has some patches

aimed at helping with debugging.

	 Beyond that, -mm contains a significant collection of patches

which have been selected by Andrew directly. These patches may

have been posted on a mailing list, or they may apply to a part of the

kernel for which there is no designated subsystem tree. As a result,

-mm operates as a sort of subsystem tree of last resort; if there is

no other obvious path for a patch into the mainline, it is likely to

end up in -mm. Miscellaneous patches which accumulate in – mm

will eventually either be forwarded on to an appropriate subsystem

tree or be sent directly to Linus. In a typical development cycle,

approximately 10% of the patches going into the mainline get there

via -mm.

	 The current -mm patch can always be found from the front

page of http://kernel.org/

	 Those who want to see the current state of -mm can get the “-mm of

the moment” tree, found at: http://userweb.kernel.org/~akpm/mmotm/

	 Use of the MMOTM tree is likely to be a frustrating experience,

though; there is a definite chance that it will not even compile. The

other staging tree, started more recently, is linux-next, maintained

by Stephen Rothwell. The linux-next tree is, by design, a snapshot

of what the mainline is expected to look like after the next merge

window closes. Linux-next trees are announced on the linux-kernel

and linux-next mailing lists when they are assembled; they can be

downloaded from:

	 http://www.kernel.org/pub/linux/kernel/people/sfr/linux-next/

	 Some information about linux-next has been gathered at:

	 http://linux.f-seidel.de/linux-next/pmwiki/

 	 How the linux-next tree will fit into the development process is still

changing. As of this writing, the first full development cycle involving

linux-next (2.6.26) is coming to an end; thus far, it has proved to

be a valuable resource for finding and fixing integration problems

before the beginning of the merge window. See http://lwn.net/

Articles/287155/ for more information on how linux-next has worked

to set up the 2.6.27 merge window.

	 Some developers have begun to suggest that linux-next should be

used as the target for future development as well. The linux-next tree

does tend to be far ahead of the mainline and is more representative

of the tree into which any new work will be merged.

	 The downside to this idea is that the volatility of linux-next

tends to make it a difficult development target. See http://lwn.net/

Articles/289013/ for more information on this topic, and stay tuned;

much is still in flux where linux-next is involved.

9

2.5: Tools

	 As can be seen from the above text, the kernel development

process depends heavily on the ability to herd collections of patches

in various directions. The whole thing would not work anywhere near

as well as it does without suitably powerful tools. Tutorials on how

to use these tools are well beyond the scope of this document, but

there is space for a few pointers.

	 By far the dominant source code management system used by the

kernel community is git. Git is one of a number of distributed version

control systems being developed in the free software community. It is

well tuned for kernel development, in that it performs quite well when

dealing with large repositories and large numbers of patches. It also

has a reputation for being difficult to learn and use, though it has

gotten better over time. Some sort of familiarity with git is almost a

requirement for kernel developers; even if they do not use it for their

own work, they’ll need git to keep up with what other developers (and

the mainline) are doing.

	 Git is now packaged by almost all Linux distributions. There is a

home page at http://git.or.cz/

	 That page has pointers to documentation and tutorials. One

should be aware, in particular, of the Kernel Hacker’s Guide to git,

which has information specific to kernel development:

		 http://linux.yyz.us/git-howto.html

	 Among the kernel developers who do not use git, the most popular

choice is almost certainly Mercurial:

		 http://www.selenic.com/mercurial/

	 Mercurial shares many features with git, but it provides an

interface which many find easier to use.

	 The other tool worth knowing about is Quilt:

http://savannah.nongnu.org/projects/quilt/

	 Quilt is a patch management system, rather than a source code

management system. It does not track history over time; it is, instead,

oriented toward tracking a specific set of changes against an evolving

code base. Some major subsystem maintainers use quilt to manage

patches intended to go upstream. For the management of certain

kinds of trees (-mm, for example), quilt is the best tool for the job.

2.6: Mailing Lists

	 A great deal of Linux kernel development work is done by way

of mailing lists. It is hard to be a fully-functioning member of the

community without joining at least one list somewhere. But Linux

mailing lists also represent a potential hazard to developers, who

risk getting buried under a load of electronic mail, running afoul of the

conventions used on the Linux lists, or both.

	 Most kernel mailing lists are run on vger.kernel.org; the master

list can be found at:

http://vger.kernel.org/vger-lists.html

	 There are lists hosted elsewhere, though; a number of them are

at lists.redhat.com.

	 The core mailing list for kernel development is, of course, linux-

kernel. This list is an intimidating place to be; volume can reach 500

messages per day, the amount of noise is high, the conversation can

be severely technical, and participants are not always concerned

with showing a high degree of politeness. But there is no other place

where the kernel development community comes together as a whole;

developers who avoid this list will miss important information.

	 There are a few hints which can help with linux-kernel survival:

	 • Have the list delivered to a separate folder, rather than your main

mailbox. One must be able to ignore the stream for sustained

periods of time.

	 • Do not try to follow every conversation – nobody else does.

It is important to filter on both the topic of interest (though note

that long-running conversations can drift away from the original

subject without changing the email subject line) and the people

who are participating.

	 • Do not feed the trolls. If somebody is trying to stir up an angry

response, ignore them.

	 • When responding to linux-kernel email (or that on other lists)

preserve the Cc: header for all involved. In the absence of a strong

reason (such as an explicit request), you should never remove

recipients. Always make sure that the person you are responding

to is in the Cc: list. This convention also makes it unnecessary to

explicitly ask to be copied on replies to your postings.

10

	 • Search the list archives (and the net as a whole) before asking

questions. Some developers can get impatient with people who

clearly have not done their homework.

	 • Avoid top-posting (the practice of putting your answer above

the quoted text you are responding to). It makes your response

harder to read and makes a poor impression.

	 • Ask on the correct mailing list. Linux-kernel may be the general

meeting point, but it is not the best place to find developers from

all subsystems.

	 The last point – finding the correct mailing list – is a common

place for beginning developers to go wrong. Somebody who asks

a networking-related question on linux-kernel will almost certainly

receive a polite suggestion to ask on the netdev list instead, as that

is the list frequented by most networking developers. Other lists exist

for the SCSI, video4linux, IDE, filesystem, etc. subsystems. The best

place to look for mailing lists is in the MAINTAINERS file packaged

with the kernel source.

2.7: Getting Started With Kernel Development

	 Questions about how to get started with the kernel development

process are common – from both individuals and companies. Equally

common are missteps which make the beginning of the relationship

harder than it has to be.

	 Companies often look to hire well-known developers to get

a development group started. This can, in fact, be an effective

technique. But it also tends to be expensive and does not do much

to grow the pool of experienced kernel developers. It is possible to

bring in-house developers up to speed on Linux kernel development,

given the investment of a bit of time. Taking this time can endow an

employer with a group of developers who understand the kernel and

the company both, and who can help to train others as well.

	 Over the medium term, this is often the more profitable approach.

Individual developers are often, understandably, at a loss for a place

to start. Beginning with a large project can be intimidating; one

often wants to test the waters with something smaller first. This is

the point where some developers jump into the creation of patches

fixing spelling errors or minor coding style issues. Unfortunately,

such patches create a level of noise which is distracting for the

development community as a whole, so, increasingly, they are looked

down upon. New developers wishing to introduce themselves to the

community will not get the sort of reception they wish for by these

means.

	 Andrew Morton gives this advice for aspiring kernel developers:

The #1 project for all kernel beginners should surely be “make

sure that the kernel runs perfectly at all times on all machines

which you can lay your hands on”. Usually the way to do this is

to work with others on getting things fixed up (this can require

persistence!) but that’s fine – it’s a part of kernel development.

(http://lwn.net/Articles/283982/)

	 In the absence of obvious problems to fix, developers are advised

to look at the current lists of regressions and open bugs in general.

There is never any shortage of issues in need of fixing; by addressing

these issues, developers will gain experience with the process while,

at the same time, building respect with the rest of the development

community.

3: Early-Stage Planning

	 When contemplating a Linux kernel development project, it can

be tempting to jump right in and start coding. As with any significant

project, though, much of the groundwork for success is best laid

before the first line of code is written. Some time spent in early

planning and communication can save far more time later on.

3.1: Specifying The Problem

	 Like any engineering project, a successful kernel enhancement

starts with a clear description of the problem to be solved. In some

cases, this step is easy: when a driver is needed for a specific piece

of hardware, for example. In others, though, it is tempting to confuse

the real problem with the proposed solution, and that can lead to

difficulties.

	 Consider an example: some years ago, developers working with

Linux audio sought a way to run applications without dropouts or other

artifacts caused by excessive latency in the system. The solution

they arrived at was a kernel module intended to hook into the Linux

Security Module (LSM) framework; this module could be configured

to give specific applications access to the realtime scheduler. This

module was implemented and sent to the linux-kernel mailing list,

where it immediately ran into problems.

	 To the audio developers, this security module was sufficient to

solve their immediate problem. To the wider kernel community, though,

it was seen as a misuse of the LSM framework (which is not intended

to confer privileges onto processes which they would not otherwise

have) and a risk to system stability. Their preferred solutions involved

realtime scheduling access via the rlimit mechanism for the short

term, and ongoing latency reduction work in the long term.

11

	 The audio community, however, could not see past the particular

solution they had implemented; they were unwilling to accept

alternatives. The resulting disagreement left those developers

feeling disillusioned with the entire kernel development process; one

of them went back to an audio list and posted this:

There are a number of very good Linux kernel

developers, but they tend to get outshouted by a large

crowd of arrogant fools. Trying to communicate user

requirements to these people is a waste of time. They

are much too “intelligent” to listen to lesser mortals.	

(http://lwn.net/Articles/131776/)

	 The reality of the situation was different; the kernel developers

were far more concerned about system stability, long-term

maintenance, and finding the right solution to the problem than they

were with a specific module. The moral of the story is to focus on

the problem – not a specific solution – and to discuss it with the

development community before investing in the creation of a body

of code.

	 So, when contemplating a kernel development project, one should

obtain answers to a short set of questions:

	 •	 What, exactly, is the problem which needs to be solved?

	 •	 Who are the users affected by this problem? Which use cases

should the solution address?

	 •	 How does the kernel fall short in addressing that problem now?

	 Only then does it make sense to start considering possible

solutions.

3.2: Early Discussion

	 When planning a kernel development project, it makes great

sense to hold discussions with the community before launching into

implementation. Early communication can save time and trouble in a

number of ways:

	 •	 It may well be that the problem is addressed by the kernel in ways

which you have not understood. The Linux kernel is large and has

a number of features and capabilities which are not immediately

obvious. Not all kernel capabilities are documented as well as one

might like, and it is easy to miss things. Your author has seen the

posting of a complete driver which duplicated an existing driver

that the new author had been unaware of. Code which reinvents

existing wheels is not only wasteful it will also not be accepted

into the mainline kernel.

	 •	 There may be elements of the proposed solution which will not

be acceptable for mainline merging. It is better to find out about

problems like this before writing the code.

	 •	 It’s entirely possible that other developers have thought about the

problem; they may have ideas for a better solution, and may be

willing to help in the creation of that solution.

	 Years of experience with the kernel development community have

taught a clear lesson: kernel code which is designed and developed

behind closed doors invariably has problems which are only revealed

when the code is released into the community. Sometimes these

problems are severe, requiring months or years of effort before the

code can be brought up to the kernel community’s standards. Some

examples include:

	 •	 The Devicescape network stack was designed and implemented

for single-processor systems. It could not be merged into the

mainline until it was made suitable for multiprocessor systems.

Retrofitting locking and such into code is a difficult task; as

a result, the merging of this code (now called mac80211) was

delayed for over a year.

	 •	 The Reiser4 filesystem included a number of capabilities

which, in the core kernel developers’ opinion, should have been

implemented in the virtual filesystem layer instead. It also included

features which could not easily be implemented without exposing

the system to user-caused deadlocks. The late revelation of these

problems – and refusal to address some of them – has caused

Reiser4 to stay out of the mainline kernel.

	 •	 The AppArmor security module made use of internal virtual

filesystem data structures in ways which were considered to be

unsafe and unreliable. This code has since been significantly

reworked, but remains outside of the mainline.

	 In each of these cases, a great deal of pain and extra work

could have been avoided with some early discussion with the kernel

developers.

3.3: Who Do You Talk To?

	 When developers decide to take their plans public, the next

question will be: where do we start? The answer is to find the

right mailing list(s) and the right maintainer. For mailing lists, the

best approach is to look in the MAINTAINERS file for a relevant

place to post. If there is a suitable subsystem list, posting there is

often preferable to posting on linux-kernel; you are more likely to

reach developers with expertise in the relevant subsystem and the

environment may be more supportive.

12

	 Finding maintainers can be a bit harder. Again, the MAINTAINERS

file is the place to start. That file tends to not always be up to date,

though, and not all subsystems are represented there. The person

listed in the MAINTAINERS file may, in fact, not be the person who

is actually acting in that role currently. So, when there is doubt about

who to contact, a useful trick is to use git (and “git log” in particular)

to see who is currently active within the subsystem of interest. Look

at who is writing patches, and who, if anybody, is attaching Signed-

off-by lines to those patches. Those are the people who will be best

placed to help with a new development project.

	 If all else fails, talking to Andrew Morton can be an effective way

to track down a maintainer for a specific piece of code.

3.4: When To Post?

	 If possible, posting your plans during the early stages can only be

helpful. Describe the problem being solved and any plans that have

been made on how the implementation will be done. Any information

you can provide can help the development community provide useful

input on the project.

	 One discouraging thing which can happen at this stage is not a

hostile reaction, but, instead, little or no reaction at all. The sad truth

of the matter is (1) kernel developers tend to be busy, (2) there is no

shortage of people with grand plans and little code (or even prospect

of code) to back them up, and (3) nobody is obligated to review

or comment on ideas posted by others. If a request-for-comments

posting yields little in the way of comments, do not assume that it

means there is no interest in the project. Unfortunately, you also

cannot assume that there are no problems with your idea. The best

thing to do in this situation is to proceed, keeping the community

informed as you go.

3.5: Getting Official Buy-In

	 If your work is being done in a corporate environment – as most

Linux kernel work is – you must, obviously, have permission from

suitably empowered managers before you can post your company’s

plans or code to a public mailing list. The posting of code which has

not been cleared for release under a GPL-compatible license can be

especially problematic; the sooner that a company’s management

and legal staff can agree on the posting of a kernel development

project, the better off everybody involved will be.

	 Some readers may be thinking at this point that their kernel work

is intended to support a product which does not yet have an officially

acknowledged existence. Revealing their employer’s plans on a

public mailing list may not be a viable option. In cases like this, it is

worth considering whether the secrecy is really necessary; there is

often no real need to keep development plans behind closed doors.

	 That said, there are also cases where a company legitimately

cannot disclose its plans early in the development process. Companies

with experienced kernel developers may choose to proceed in an

open-loop manner on the assumption that they will be able to avoid

serious integration problems later. For companies without that sort

of in-house expertise, the best option is often to hire an outside

developer to review the plans under a non-disclosure agreement

The Linux Foundation operates an NDA program designed to help

with this sort of situation; more information can be found at:

	 http://www.linuxfoundation.org/en/NDA_program

	 This kind of review is often enough to avoid serious problems

later on without requiring public disclosure of the project.

4: Getting The Code Right

	 While there is much to be said for a solid and community-oriented

design process, the proof of any kernel development project is in

the resulting code. It is the code which will be examined by other

developers and merged (or not) into the mainline tree. So it is the

quality of this code which will determine the ultimate success of the

project.

	 This section will examine the coding process. We’ll start with a

look at a number of ways in which kernel developers can go wrong.

Then the focus will shift toward doing things right and the tools which

can help in that quest.

4.1: Pitfalls

Coding Style

	 The kernel has long had a standard coding style, described in

	 Documentation/CodingStyle. For much of that time, the policies

described in that file were taken as being, at most, advisory. As a

result, there is a substantial amount of code in the kernel which does

not meet the coding style guidelines. The presence of that code

leads to two independent hazards for kernel developers.

13

	 The first of these is to believe that the kernel coding standards

do not matter and are not enforced. The truth of the matter is that

adding new code to the kernel is very difficult if that code is not

coded according to the standard; many developers will request that

the code be reformatted before they will even review it. A code base

as large as the kernel requires some uniformity of code to make it

possible for developers to quickly understand any part of it. So there

is no longer room for strangely-formatted code.

 	 Occasionally, the kernel’s coding style will run into conflict with

an employer’s mandated style. In such cases, the kernel’s style will

have to win before the code can be merged. Putting code into the

kernel means giving up a degree of control in a number of ways –

including control over how the code is formatted.

	 The other trap is to assume that code which is already in the

kernel is urgently in need of coding style fixes. Developers may

start to generate reformatting patches as a way of gaining familiarity

with the process, or as a way of getting their name into the kernel

changelogs – or both. But pure coding style fixes are seen as noise

by the development community; they tend to get a chilly reception.

So this type of patch is best avoided. It is natural to fix the style of a

piece of code while working on it for other reasons, but coding style

changes should not be made for their own sake.

	 The coding style document also should not be read as an absolute

law which can never be transgressed. If there is a good reason to go

against the style (a line which becomes far less readable if split to fit

within the 80-column limit, for example), just do it.

Abstraction Layers

	 Computer Science professors teach students to make extensive

use of abstraction layers in the name of flexibility and information

hiding. Certainly the kernel makes extensive use of abstraction; no

project involving several million lines of code could do otherwise and

survive.

	 But experience has shown that excessive or premature

abstraction can be just as harmful as premature optimization.

Abstraction should be used to the level required and no further.

	 At a simple level, consider a function which has an argument

which is always passed as zero by all callers. One could retain that

argument just in case somebody eventually needs to use the extra

flexibility that it provides. By that time, though, chances are good that

the code which implements this extra argument has been broken in

some subtle way which was never noticed – because it has never

been used.

	 Or, when the need for extra flexibility arises, it does not do

so in a way which matches the programmer’s early expectation.

Kernel developers will routinely submit patches to remove unused

arguments; they should, in general, not be added in the first place.

	 Abstraction layers which hide access to hardware – often to allow

the bulk of a driver to be used with multiple operating systems –

are especially frowned upon. Such layers obscure the code and

may impose a performance penalty; they do not belong in the Linux

kernel.

	 On the other hand, if you find yourself copying significant amounts

of code from another kernel subsystem, it is time to ask whether it

would, in fact, make sense to pull out some of that code into a separate

library or to implement that functionality at a higher level. There is no

value in replicating the same code throughout the kernel.

#Ifdef and Preprocessor Use In General

	 The C preprocessor seems to present a powerful temptation to

some C programmers, who see it as a way to efficiently encode a

great deal of flexibility into a source file. But the preprocessor is not

C, and heavy use of it results in code which is much harder for others

to read and harder for the compiler to check for correctness. Heavy

preprocessor use is almost always a sign of code which needs some

cleanup work.

	 Conditional compilation with #ifdef is, indeed, a powerful feature,

and it is used within the kernel. But there is little desire to see code

which is sprinkled liberally with #ifdef blocks. As a general rule,

#ifdef use should be confined to header files whenever possible.

Conditionally-compiled code can be confined to functions which, if

the code is not to be present, simply become empty. The compiler

will then quietly optimize out the call to the empty function. The result

is far cleaner code which is easier to follow.

	 C preprocessor macros present a number of hazards, including

possible multiple evaluation of expressions with side effects and no

type safety. If you are tempted to define a macro, consider creating an

inline function instead. The code which results will be the same, but

inline functions are easier to read, do not evaluate their arguments

multiple times, and allow the compiler to perform type checking on

the arguments and return value.

14

Inline Functions

	 Inline functions present a hazard of their own, though.

Programmers can become enamored of the perceived efficiency

inherent in avoiding a function call and fill a source file with

inline functions. Those functions, however, can actually reduce

performance. Since their code is replicated at each call site, they

end up bloating the size of the compiled kernel.

	 That, in turn, creates pressure on the processor’s memory

caches, which can slow execution dramatically. Inline functions, as a

rule, should be quite small and relatively rare. The cost of a function

call, after all, is not that high; the creation of large numbers of inline

functions is a classic example of premature optimization.

	 In general, kernel programmers ignore cache effects at their peril.

The classic time/space tradeoff taught in beginning data structures

classes often does not apply to contemporary hardware. Space *is*

time, in that a larger program will run slower than one which is more

compact.

Locking

	 In May, 2006, the “Devicescape” networking stack was, with great

fanfare, released under the GPL and made available for inclusion

in the mainline kernel. This donation was welcome news; support

for wireless networking in Linux was considered substandard at

best, and the Devicescape stack offered the promise of fixing that

situation. Yet, this code did not actually make it into the mainline until

June, 2007 (2.6.22). What happened?

	 This code showed a number of signs of having been developed

behind corporate doors. But one large problem in particular was that

it was not designed to work on multiprocessor systems. Before this

networking stack (now called mac80211) could be merged, a locking

scheme needed to be retrofitted onto it.

	 Once upon a time, Linux kernel code could be developed without

thinking about the concurrency issues presented by multiprocessor

systems. Now, however, this document is being written on a dual-

core laptop. Even on single-processor systems, work being done to

improve responsiveness will raise the level of concurrency within the

kernel. The days when kernel code could be written without thinking

about locking are long past.

	 Any resource (data structures, hardware registers, etc.) which

could be accessed concurrently by more than one thread must be

protected by a lock. New code should be written with this requirement

in mind; retrofitting locking after the fact is a rather more difficult task.

Kernel developers should take the time to understand the available

locking primitives well enough to pick the right tool for the job. Code

which shows a lack of attention to concurrency will have a difficult

path into the mainline.

Regressions

	 One final hazard worth mentioning is this: it can be tempting to

make a change (which may bring big improvements) which causes

something to break for existing users. This kind of change is called

a “regression,” and regressions have become most unwelcome in

the mainline kernel. With few exceptions, changes which cause

regressions will be backed out if the regression cannot be fixed in a

timely manner. Far better to avoid the regression in the first place.

	 It is often argued that a regression can be justified if it causes

things to work for more people than it creates problems for. Why not

make a change if it brings new functionality to ten systems for each

one it breaks? The best answer to this question was expressed by

Linus in July, 2007:

So we don’t fix bugs by introducing new problems. That

way lies madness, and nobody ever knows if you actually

make any real progress at all. Is it two steps forwards, one

step back, or one step forward and two steps back? 	

(http://lwn.net/Articles/243460/)

	 An especially unwelcome type of regression is any sort of change

to the user-space ABI. Once an interface has been exported to user

space, it must be supported indefinitely. This fact makes the creation

of user-space interfaces particularly challenging: since they cannot

be changed in incompatible ways, they must be done right the first

time. For this reason, a great deal of thought, clear documentation,

and wide review for user-space interfaces is always required.

15

4.2: Code Checking Tools

	 For now, at least, the writing of error-free code remains an ideal

that few of us can reach. What we can hope to do, though, is to catch

and fix as many of those errors as possible before our code goes

into the mainline kernel. To that end, the kernel developers have put

together an impressive array of tools which can catch a wide variety

of obscure problems in an automated way. Any problem caught by

the computer is a problem which will not afflict a user later on, so it

stands to reason that the automated tools should be used whenever

possible.

	 The first step is simply to heed the warnings produced by the

compiler. Contemporary versions of gcc can detect (and warn about)

a large number of potential errors. Quite often, these warnings point

to real problems. Code submitted for review should, as a rule, not

produce any compiler warnings. When silencing warnings, take care

to understand the real cause and try to avoid “fixes” which make the

warning go away without addressing its cause.

	 Note that not all compiler warnings are enabled by default. Build

the kernel with “make EXTRA_CFLAGS=-W” to get the full set.

	 The kernel provides several configuration options which turn on

debugging features; most of these are found in the “kernel hacking”

submenu. Several of these options should be turned on for any

kernel used for development or testing purposes. In particular, you

should turn on:

	 •	 ENABLE_WARN_DEPRECATED, ENABLE_MUST_CHECK, and

FRAME_WARN to get an extra set of warnings for problems like

the use of deprecated interfaces or ignoring an important return

value from a function. The output generated by these warnings

can be verbose, but one need not worry about warnings from

other parts of the kernel.

	 •	 DEBUG_OBJECTS will add code to track the lifetime of various

objects created by the kernel and warn when things are done

out of order. If you are adding a subsystem which creates (and

exports) complex objects of its own, consider adding support for

the object debugging infrastructure.

	 •	 DEBUG_SLAB can find a variety of memory allocation and use

errors; it should be used on most development kernels.

	 •	 DEBUG_SPINLOCK, DEBUG_SPINLOCK_SLEEP, and DEBUG_

MUTEXES will find a number of common locking errors.

	 There are quite a few other debugging options, some of which will

be discussed below. Some of them have a significant performance

impact and should not be used all of the time. But some time spent

learning the available options will likely be paid back many times

over in short order.

	 One of the heavier debugging tools is the locking checker, or

“lockdep.” This tool will track the acquisition and release of every

lock (spinlock or mutex) in the system, the order in which locks are

acquired relative to each other, the current interrupt environment, and

more. It can then ensure that locks are always acquired in the same

order, that the same interrupt assumptions apply in all situations,

and so on. In other words, lockdep can find a number of scenarios

in which the system could, on rare occasion, deadlock. This kind of

problem can be painful (for both developers and users) in a deployed

system; lockdep allows them to be found in an automated manner

ahead of time. Code with any sort of non-trivial locking should be run

with lockdep enabled before being submitted for inclusion.

	 As a diligent kernel programmer, you will, beyond doubt, check

the return status of any operation (such as a memory allocation)

which can fail. The fact of the matter, though, is that the resulting

failure recovery paths are, probably, completely untested. Untested

code tends to be broken code; you could be much more confident of

your code if all those error-handling paths had been exercised a few

times.

	 The kernel provides a fault injection framework which can do

exactly that, especially where memory allocations are involved.

With fault injection enabled, a configurable percentage of memory

allocations will be made to fail; these failures can be restricted to a

specific range of code. Running with fault injection enabled allows

the programmer to see how the code responds when things go

badly. See Documentation/fault-injection/fault-injection.text for more

information on how to use this facility.

	 Other kinds of errors can be found with the “sparse” static analysis

tool. With sparse, the programmer can be warned about confusion

between user-space and kernel-space addresses, mixture of big-

endian and small-endian quantities, the passing of integer values

where a set of bit flags is expected, and so on. Sparse must be

installed separately (it can be found at http://www.kernel.org/pub/

software/devel/sparse/ if your distributor does not package it); it can

then be run on the code by adding “C=1” to your make command.

	 Other kinds of portability errors are best found by compiling your

code for other architectures. If you do not happen to have an S/390

system or a Blackfin development board handy, you can still perform

the compilation step. A large set of cross compilers for x86 systems

can be found at http://www.kernel.org/pub/tools/crosstool/

	 Some time spent installing and using these compilers will help

avoid embarrassment later.

16

4.3: Documentation

	 Documentation has often been more the exception than the rule

with kernel development. Even so, adequate documentation will help

to ease the merging of new code into the kernel, make life easier for

other developers, and will be helpful for your users. In many cases,

the addition of documentation has become essentially mandatory.

	 The first piece of documentation for any patch is its associated

changelog. Log entries should describe the problem being solved,

the form of the solution, the people who worked on the patch, any

relevant effects on performance, and anything else that might be

needed to understand the patch.

	 Any code which adds a new user-space interface – including new

sysfs or /proc files – should include documentation of that interface

which enables user-space developers to know what they are working

with. See Documentation/ABI/README for a description of how this

documentation should be formatted and what information needs to

be provided.

	 The file Documentation/kernel-parameters.txt describes all

of the kernel’s boot-time parameters. Any patch which adds new

parameters should add the appropriate entries to this file.

	 Any new configuration options must be accompanied by help text

which clearly explains the options and when the user might want to

select them.

	 Internal API information for many subsystems is documented

by way of specially-formatted comments; these comments can be

extracted and formatted in a number of ways by the “kernel-doc”

script. If you are working within a subsystem which has kerneldoc

comments, you should maintain them and add them, as appropriate,

for externally-available functions. Even in areas which have not been

so documented, there is no harm in adding kerneldoc comments

for the future; indeed, this can be a useful activity for beginning

kernel developers. The format of these comments, along with some

information on how to create kerneldoc templates can be found in

the file Documentation/kernel-doc-nano-HOWTO.txt.

	 Anybody who reads through a significant amount of existing

kernel code will note that, often, comments are most notable by their

absence. Once again, the expectations for new code are higher than

they were in the past; merging uncommented code will be harder.

That said, there is little desire for verbosely-commented code. The

code should, itself, be readable, with comments explaining the more

subtle aspects.

	 Certain things should always be commented. Uses of memory

barriers should be accompanied by a line explaining why the barrier

is necessary. The locking rules for data structures generally need to

be explained somewhere. Major data structures need comprehensive

documentation in general.

	 Non-obvious dependencies between separate bits of code should

be pointed out. Anything which might tempt a code janitor to make an

incorrect “cleanup” needs a comment saying why it is done the way it

is. And so on.

4.4: Internal Api Changes

	 The binary interface provided by the kernel to user space cannot

be broken except under the most severe circumstances. The kernel’s

internal programming interfaces, instead, are highly fluid and can be

changed when the need arises. If you find yourself having to work

around a kernel API, or simply not using a specific functionality

because it does not meet your needs, that may be a sign that the

API needs to change. As a kernel developer, you are empowered to

make such changes.

	 There are, of course, some catches. API changes can be made,

but they need to be well justified. So any patch making an internal

API change should be accompanied by a description of what the

change is and why it is necessary. This kind of change should also

be broken out into a separate patch, rather than buried within a larger

patch.

	 The other catch is that a developer who changes an internal API

is generally charged with the task of fixing any code within the kernel

tree which is broken by the change. For a widely-used function, this

duty can lead to literally hundreds or thousands of changes – many of

which are likely to conflict with work being done by other developers.

Needless to say, this can be a large job, so it is best to be sure that

the justification is solid.

	 When making an incompatible API change, one should, whenever

possible, ensure that code which has not been updated is caught by

the compiler. This will help you to be sure that you have found all in-

tree uses of that interface. It will also alert developers of out-of-tree

code that there is a change that they need to respond to. Supporting

out-of-tree code is not something that kernel developers need to be

worried about, but we also do not have to make life harder for out-of-

tree developers than it it needs to be.

17

5: Posting Patches

	 Sooner or later, the time comes when your work is ready to be

presented to the community for review and, eventually, inclusion

into the mainline kernel. Unsurprisingly, the kernel development

community has evolved a set of conventions and procedures which

are used in the posting of patches; following them will make life

much easier for everybody involved. This document will attempt to

cover these expectations in reasonable detail; more information can

also be found in the files SubmittingPatches, SubmittingDrivers, and

SubmitChecklist in the kernel documentation directory.

5.1: When To Post

	 There is a constant temptation to avoid posting patches before

they are completely “ready.” For simple patches, that is not a problem.

If the work being done is complex, though, there is a lot to be gained

by getting feedback from the community before the work is complete.

So you should consider posting in-progress work, or even making

a git tree available so that interested developers can catch up with

your work at any time.

	 When posting code which is not yet considered ready for inclusion,

it is a good idea to say so in the posting itself. Also mention any major

work which remains to be done and any known problems. Fewer

people will look at patches which are known to be half-baked, but

those who do will come in with the idea that they can help you drive

the work in the right direction.

5.2: Before Creating Patches

	 There are a number of things which should be done before you

consider sending patches to the development community. These

include:

	 •	 Test the code to the extent that you can. Make use of the

kernel’s debugging tools, ensure that the kernel will build with

all reasonable combinations of configuration options, use cross-

compilers to build for different architectures, etc.

	 •	 Make sure your code is compliant with the kernel coding style

guidelines.

	 •	 Does your change have performance implications? If so, you

should run benchmarks showing what the impact (or benefit) of

your change is; a summary of the results should be included with

the patch.

	 •	 Be sure that you have the right to post the code. If this work was

done for an employer, the employer likely has a right to the work

and must be agreeable with its release under the GPL.

	 As a general rule, putting in some extra thought before posting

code almost always pays back the effort in short order.

5.3: Patch Preparation

	 The preparation of patches for posting can be a surprising amount

of work, but, once again, attempting to save time here is not generally

advisable even in the short term.

	 Patches must be prepared against a specific version of the kernel.

As a general rule, a patch should be based on the current mainline as

found in Linus’s git tree. It may become necessary to make versions

against -mm, linux-next, or a subsystem tree, though, to facilitate

wider testing and review. Depending on the area of your patch and

what is going on elsewhere, basing a patch against these other

trees can require a significant amount of work resolving conflicts and

dealing with API changes.

	 Only the most simple changes should be formatted as a single

patch; everything else should be made as a logical series of changes.

Splitting up patches is a bit of an art; some developers spend a long

time figuring out how to do it in the way that the community expects.

	 There are a few rules of thumb, however, which can help

considerably:

	 •	 The patch series you post will almost certainly not be the series of

changes found in your working revision control system. Instead,

the changes you have made need to be considered in their final

form, then split apart in ways which make sense. The developers

are interested in discrete, self-contained changes, not the path

you took to get to those changes.

	 •	 Each logically independent change should be formatted as a

separate patch. These changes can be small (“add a field to this

structure”) or large (adding a significant new driver, for example),

but they should be conceptually small and amenable to a one-line

description. Each patch should make a specific change which can

be reviewed on its own and verified to do what it says it does.

	 •	 As a way of restating the guideline above: do not mix different

types of changes in the same patch. If a single patch fixes a

critical security bug, rearranges a few structures, and reformats

the code, there is a good chance that it will be passed over and

the important fix will be ost.

	 •	 Each patch should yield a kernel which builds and runs properly;

if your patch series is interrupted in the middle, the result should

still be a working kernel. Partial application of a patch series

is a common scenario when the “git bisect” tool is used to find

regressions; if the result is a broken kernel, you will make life

harder for developers and users who are engaging in the noble

work of tracking down problems.

18

	 •	 Do not overdo it, though. One developer recently posted a set of

edits to a single file as 500 separate patches – an act which did

not make him the most popular person on the kernel mailing list.

A single patch can be reasonably large as long as it still contains

a single *logical* change.

	 •	 It can be tempting to add a whole new infrastructure with a series

of patches, but to leave that infrastructure unused until the final

patch in the series enables the whole thing. This temptation

should be avoided if possible; if that series adds regressions,

bisection will finger the last patch as the one which caused the

problem, even though the real bug is elsewhere. Whenever

possible, a patch which adds new code should make that code

active immediately.

	 Working to create the perfect patch series can be a frustrating

process which takes quite a bit of time and thought after the “real

work” has been done. When done properly, though, it is time well

spent.

5.4: Patch Formatting

	 So now you have a perfect series of patches for posting, but the

work is not done quite yet. Each patch needs to be formatted into a

message which quickly and clearly communicates its purpose to the

rest of the world. To that end, each patch will be composed of the

following:

	 •	 An optional “From” line naming the author of the patch. This line

is only necessary if you are passing on somebody else’s patch via

email, but it never hurts to add it when in doubt.

	 •	 A one-line description of what the patch does. This message

should be enough for a reader who sees it with no other context

to figure out the scope of the patch; it is the line that will show up

in the “short form” changelogs. This message is usually formatted

with the relevant subsystem name first, followed by the purpose

of the patch. For example:

	 gpio: fix build on CONFIG_GPIO_SYSFS=n

	 •	 A blank line followed by a detailed description of the contents

of the patch. This description can be as long as is required; it

should say what the patch does and why it should be applied to

the kernel.

	 •	 One or more tag lines, with, at a minimum, one Signed-off-by: line

from the author of the patch. Tags will be described in more detail

below.The above three items should, normally, be the text used

when committing the change to a revision control system. They

are followed by:

	 •	 The patch itself, in the unified (“-u”) patch format. Using the “-p”

option to diff will associate function names with changes, making

the resulting patch easier for others to read.

		 You should avoid including changes to irrelevant files (those

generated by the build process, for example, or editor backup

files) in the patch. The file “dontdiff” in the Documentation directory

can help in this regard; pass it to diff with the “-X” option.

	 The tags mentioned above are used to describe how various

developers have been associated with the development of this patch.

They are described in detail in the SubmittingPatches document;

what follows here is a brief summary. Each of these lines has the

format: tag: Full Name <email address> optional-other-stuff

 	 The tags in common use are:

	 •	 Signed-off-by: this is a developer’s certification that he or she has

the right to submit the patch for inclusion into the kernel. It is an

agreement to the Developer’s Certificate of Origin, the full text of

which can be found in Documentation/SubmittingPatches. Code

without a proper signoff cannot be merged into the mainline.

	 •	 Acked-by: indicates an agreement by another developer (often a

maintainer of the relevant code) that the patch is appropriate for

inclusion into the kernel.

	 •	 Tested-by: states that the named person has tested the patch and

found it to work.

	 •	 Reviewed-by: the named developer has reviewed the patch for

correctness; see the reviewer’s statement in Documentation/

SubmittingPatches for more detail.

	 •	 Reported-by: names a user who reported a problem which is

fixed by this patch; this tag is used to give credit to the (often

underappreciated) people who test our code and let us know

when things do not work correctly.

	 •	 Cc: the named person received a copy of the patch and had the

opportunity to comment on it.

	 Be careful in the addition of tags to your patches: only Cc: is

appropriate for addition without the explicit permission of the person

named.

19

5.5: Sending The Patch

	 Before you mail your patches, there are a couple of other things

you should take care of:

	 •	 Are you sure that your mailer will not corrupt the patches? Patches

which have had gratuitous white-space changes or line wrapping

performed by the mail client will not apply at the other end, and

often will not be examined in any detail. If there is any doubt at all,

mail the patch to yourself and convince yourself that it shows up

intact. Documentation/email-clients.txt has some helpful hints on

making specific mail clients work for sending patches.

	 •	 Are you sure your patch is free of silly mistakes? You should

always run patches through scripts/checkpatch.pl and address

the complaints it comes up with. Please bear in mind that

checkpatch.pl, while being the embodiment of a fair amount of

thought about what kernel patches should look like, is not smarter

than you. If fixing a checkpatch.pl complaint would make the code

worse, don’t do it.

		 Patches should always be sent as plain text. Please do not send

them as attachments; that makes it much harder for reviewers to

quote sections of the patch in their replies. Instead, just put the

patch directly into your message.

		 When mailing patches, it is important to send copies to anybody

who might be interested in it. Unlike some other projects, the

kernel encourages people to err on the side of sending too many

copies; don’t assume that the relevant people will see your posting

on the mailing lists. In particular, copies should go to:

	 •	 The maintainer(s) of the affected subsystem(s). As described

earlier, the MAINTAINERS file is the first place to look for these

people.

	 •	 Other developers who have been working in the same area –

especially those who might be working there now. Using git to

see who else has modified the files you are working on can be

helpful.

	 •	 If you are responding to a bug report or a feature request, copy

the original poster as well.

	 •	 Send a copy to the relevant mailing list, or, if nothing else applies,

the linux-kernel list.

	 •	 If you are fixing a bug, think about whether the fix should go into

the next stable update. If so, stable@kernel.org should get a copy

of the patch. Also add a “Cc: stable@kernel.org” to the tags within

the patch itself; that will cause the stable team to get a notification

when your fix goes into the mainline.

	 When selecting recipients for a patch, it is good to have an idea of

who you think will eventually accept the patch and get it merged. While

it is possible to send patches directly to Linus Torvalds and have him

merge them, things are not normally done that way. Linus is busy,

and there are subsystem maintainers who watch over specific parts

of the kernel. Usually you will be wanting that maintainer to merge

your patches. If there is no obvious maintainer, Andrew Morton is

often the patch target of last resort.

	 Patches need good subject lines. The canonical format for a

patch line is something like:

[PATCH nn/mm] subsys: one-line description of the patch

	 where “nn” is the ordinal number of the patch, “mm” is the total

number of patches in the series, and “subsys” is the name of the

affected subsystem. Clearly, nn/mm can be omitted for a single,

standalone patch.

	 If you have a significant series of patches, it is customary to

send an introductory description as part zero. This convention is not

universally followed though; if you use it, remember that information

in the introduction does not make it into the kernel changelogs.

So please ensure that the patches, themselves, have complete

changelog information.

	 In general, the second and following parts of a multi-part patch

should be sent as a reply to the first part so that they all thread

together at the receiving end. Tools like git and quilt have commands

to mail out a set of patches with the proper threading. If you have a

long series, though, and are using git, please provide the – no-chain-

reply-to option to avoid creating exceptionally deep nesting.

20

6: Followthrough

	 At this point, you have followed the guidelines given so far and,

with the addition of your own engineering skills, have posted a perfect

series of patches. One of the biggest mistakes that even experienced

kernel developers can make is to conclude that their work is now done.

In truth, posting patches indicates a transition into the next stage of the

process, with, possibly, quite a bit of work yet to be done.

	 It is a rare patch which is so good at its first posting that there

is no room for improvement. The kernel development process

recognizes this fact, and, as a result, is heavily oriented toward the

improvement of posted code. You, as the author of that code, will be

expected to work with the kernel community to ensure that your code

is up to the kernel’s quality standards. A failure to participate in this

process is quite likely to prevent the inclusion of your patches into

the mainline.

6.1: Working With Reviewers

	 A patch of any significance will result in a number of comments

from other developers as they review the code. Working with

reviewers can be, for many developers, the most intimidating part

of the kernel development process. Life can be made much easier,

though, if you keep a few things in mind:

	 •	 If you have explained your patch well, reviewers will understand

its value and why you went to the trouble of writing it. But that

value will not keep them from asking a fundamental question:

what will it be like to maintain a kernel with this code in it five

or ten years later? Many of the changes you may be asked to

make – from coding style tweaks to substantial rewrites – come

from the understanding that Linux will still be around and under

development a decade from now.

	 •	 Code review is hard work, and it is a relatively thankless

occupation; people remember who wrote kernel code, but there

is little lasting fame for those who reviewed it. So reviewers can

get grumpy, especially when they see the same mistakes being

made over and over again. If you get a review which seems angry,

insulting, or outright offensive, resist the impulse to respond in

kind. Code review is about the code, not about the people, and

code reviewers are not attacking you personally.

	 •	 Similarly, code reviewers are not trying to promote their employers’

agendas at the expense of your own. Kernel developers often

expect to be working on the kernel years from now, but they

understand that their employer could change. They truly are,

almost without exception, working toward the creation of the best

kernel they can; they are not trying to create discomfort for their

employers’ competitors.

	 What all of this comes down to is that, when reviewers send you

comments, you need to pay attention to the technical observations

that they are making. Do not let their form of expression or your own

pride keep that from happening. When you get review comments on

a patch, take the time to understand what the reviewer is trying to

say. If possible, fix the things that the reviewer is asking you to fix.

And respond back to the reviewer: thank them, and describe how

you will answer their questions.

	 Note that you do not have to agree with every change suggested

by reviewers. If you believe that the reviewer has misunderstood

your code, explain what is really going on. If you have a technical

objection to a suggested change, describe it and justify your solution

to the problem. If your explanations make sense, the reviewer will

accept them. Should your explanation not prove persuasive, though,

especially if others start to agree with the reviewer, take some time

to think things over again. It can be easy to become blinded by your

own solution to a problem to the point that you don’t realize that

something is fundamentally wrong or, perhaps, you’re not even

solving the right problem.

	 One fatal mistake is to ignore review comments in the hope that

they will go away. They will not go away. If you repost code without

having responded to the comments you got the time before, you’re

likely to find that your patches go nowhere.

	 Speaking of reposting code: please bear in mind that reviewers

are not going to remember all the details of the code you posted the

last time around. So it is always a good idea to remind reviewers

of previously raised issues and how you dealt with them; the patch

changelog is a good place for this kind of information. Reviewers

should not have to search through list archives to familiarize

themselves with what was said last time; if you help them get a

running start, they will be in a better mood when they revisit your

code.

	 What if you’ve tried to do everything right and things still aren’t

going anywhere? Most technical disagreements can be resolved

through discussion, but there are times when somebody simply has

to make a decision. If you honestly believe that this decision is going

against you wrongly, you can always try appealing to a higher power.

As of this writing, that higher power tends to be Andrew Morton.

Andrew has a great deal of respect in the kernel development

community; he can often unjam a situation which seems to be

hopelessly blocked. Appealing to Andrew should not be done lightly,

though, and not before all other alternatives have been explored.

And bear in mind, of course, that he may not agree with you either.

21

6.2: What Happens Next

	 If a patch is considered to be a good thing to add to the kernel,

and once most of the review issues have been resolved, the next

step is usually entry into a subsystem maintainer’s tree. How that

works varies from one subsystem to the next; each maintainer has

his or her own way of doing things. In particular, there may be more

than one tree – one, perhaps, dedicated to patches planned for the

next merge window, and another for longer-term work.

	 For patches applying to areas for which there is no obvious

subsystem tree (memory management patches, for example), the

default tree often ends up being -mm. Patches which affect multiple

subsystems can also end up going through the -mm tree.

	 Inclusion into a subsystem tree can bring a higher level of

visibility to a patch. Now other developers working with that tree will

get the patch by default. Subsystem trees typically feed into -mm and

linux-next as well, making their contents visible to the development

community as a whole. At this point, there’s a good chance that you

will get more comments from a new set of reviewers; these comments

need to be answered as in the previous round.

	 What may also happen at this point, depending on the nature of

your patch, is that conflicts with work being done by others turn up. In

the worst case, heavy patch conflicts can result in some work being

put on the back burner so that the remaining patches can be worked

into shape and merged. Other times, conflict resolution will involve

working with the other developers and, possibly, moving some

patches between trees to ensure that everything applies cleanly.

This work can be a pain, but count your blessings: before the advent

of the linux-next tree, these conflicts often only turned up during the

merge window and had to be addressed in a hurry. Now they can be

resolved at leisure, before the merge window opens.

	 Some day, if all goes well, you’ll log on and see that your patch

has been merged into the mainline kernel. Congratulations! Once

the celebration is complete (and you have added yourself to the

MAINTAINERS file), though, it is worth remembering an important

little fact: the job still is not done. Merging into the mainline brings its

own challenges.

	 To begin with, the visibility of your patch has increased yet again.

There may be a new round of comments from developers who had not

been aware of the patch before. It may be tempting to ignore them,

since there is no longer any question of your code being merged.

Resist that temptation, though; you still need to be responsive to

developers who have questions or suggestions.

	 More importantly, though: inclusion into the mainline puts your

code into the hands of a much larger group of testers. Even if you

have contributed a driver for hardware which is not yet available,

you will be surprised by how many people will build your code into

their kernels. And, of course, where there are testers, there will be

bug reports.

	 The worst sort of bug reports are regressions. If your patch causes

a regression, you’ll find an uncomfortable number of eyes upon you;

regressions need to be fixed as soon as possible. If you are unwilling

or unable to fix the regression (and nobody else does it for you), your

patch will almost certainly be removed during the stabilization period.

Beyond negating all of the work you have done to get your patch into

the mainline, having a patch pulled as the result of a failure to fix a

regression could well make it harder for you to get work merged in

the future.

	 After any regressions have been dealt with, there may be other,

ordinary bugs to deal with. The stabilization period is your best

opportunity to fix these bugs and ensure that your code’s debut in a

mainline kernel release is as solid as possible. So, please, answer

bug reports, and fix the problems if at all possible. That’s what the

stabilization period is for; you can start creating cool new patches

once any problems with the old ones have been taken care of.

	 And don’t forget that there are other milestones which may also

create bug reports: the next mainline stable release, when prominent

distributors pick up a version of the kernel containing your patch,

etc. Continuing to respond to these reports is a matter of basic pride

in your work. If that is insufficient motivation, though, it’s also worth

considering that the development community remembers developers

who lose interest in their code after it’s merged. The next time you

post a patch, they will be evaluating it with the assumption that you

will not be around to maintain it afterward.

6.3: Other Things That Can Happen

	 One day, you may open your mail client and see that somebody

has mailed you a patch to your code. That is one of the advantages of

having your code out there in the open, after all. If you agree with the

patch, you can either forward it on to the subsystem maintainer (be

sure to include a proper From: line so that the attribution is correct,

and add a signoff of your own), or send an Acked-by: response back

and let the original poster send it upward.

22

	 If you disagree with the patch, send a polite response explaining

why. If possible, tell the author what changes need to be made to

make the patch acceptable to you. There is a certain resistance to

merging patches which are opposed by the author and maintainer

of the code, but it only goes so far. If you are seen as needlessly

blocking good work, those patches will eventually flow around you

and get into the mainline anyway. In the Linux kernel, nobody has

absolute veto power over any code. Except maybe Linus.

	 On very rare occasion, you may see something completely

different: another developer posts a different solution to your

problem. At that point, chances are that one of the two patches will

not be merged, and “mine was here first” is not considered to be a

compelling technical argument. If somebody else’s patch displaces

yours and gets into the mainline, there is really only one way to

respond: be pleased that your problem got solved and get on with

your work. Having one’s work shoved aside in this manner can be

hurtful and discouraging, but the community will remember your

reaction long after they have forgotten whose patch actually got

merged.

7: Advanced Topics

	 At this point, hopefully, you have a handle on how the development

process works. There is still more to learn, however! This section

will cover a number of topics which can be helpful for developers

wanting to become a regular part of the Linux kernel development

process.

7.1: Managing Patches With Git

	 The use of distributed version control for the kernel began in early

2002, when Linus first started playing with the proprietary BitKeeper

application. While BitKeeper was controversial, the approach to

software version management it embodied most certainly was not.

Distributed version control enabled an immediate acceleration of the

kernel development project. In current times, there are several free

alternatives to BitKeeper. For better or for worse, the kernel project

has settled on git as its tool of choice.

	 Managing patches with git can make life much easier for the

developer, especially as the volume of those patches grows. Git

also has its rough edges and poses certain hazards; it is a young

and powerful tool which is still being civilized by its developers.

This document will not attempt to teach the reader how to use git;

that would be sufficient material for a long document in its own

right. Instead, the focus here will be on how git fits into the kernel

development process in particular. Developers who wish to come up

to speed with git will find more information at:

http://git.or.cz/

http://www.kernel.org/pub/software/scm/git/docs/user-

manual.html

	 and on various tutorials found on the web.

 	 The first order of business is to read the above sites and get a

solid understanding of how git works before trying to use it to make

patches available to others. A git-using developer should be able to

obtain a copy of the mainline repository, explore the revision history,

commit changes to the tree, use branches, etc. An understanding of

git’s tools for the rewriting of history (such as rebase) is also useful.

Git comes with its own terminology and concepts; a new user of git

should know about refs, remote branches, the index, fast-forward

merges, pushes and pulls, detached heads, etc. It can all be a little

intimidating at the outset, but the concepts are not that hard to grasp

with a bit of study.

	 Using git to generate patches for submission by email can be

a good exercise while coming up to speed. When you are ready

to start putting up git trees for others to look at, you will, of course,

need a server that can be pulled from. Setting up such a server with

git-daemon is relatively straightforward if you have a system which

is accessible to the Internet. Otherwise, free, public hosting sites

(Github, for example) are starting to appear on the net. Established

developers can get an account on kernel.org, but those are not easy

to come by; see http://kernel.org/faq/ for more information.

	 The normal git workflow involves the use of a lot of branches.

Each line of development can be separated into a separate “topic

branch” and maintained independently. Branches in git are cheap,

there is no reason to not make free use of them. And, in any case,

you should not do your development in any branch which you intend

to ask others to pull from. Publicly-available branches should be

created with care; merge in patches from development branches

when they are in complete form and ready to go – not before.

23

	 Git provides some powerful tools which can allow you to rewrite

your development history. An inconvenient patch (one which breaks

bisection, say, or which has some other sort of obvious bug) can be

fixed in place or made to disappear from the history entirely. A patch

series can be rewritten as if it had been written on top of today’s

mainline, even though you have been working on it for months.

Changes can be transparently shifted from one branch to another.

And so on. Judicious use of git’s ability to revise history can help in

the creation of clean patch sets with fewer problems.

	 Excessive use of this capability can lead to other problems,

though, beyond a simple obsession for the creation of the perfect

project history. Rewriting history will rewrite the changes contained in

that history, turning a tested (hopefully) kernel tree into an untested

one. But, beyond that, developers cannot easily collaborate if they

do not have a shared view of the project history; if you rewrite history

which other developers have pulled into their repositories, you will

make life much more difficult for those developers. So a simple rule

of thumb applies here: history which has been exported to others

should generally be seen as immutable thereafter.

	 So, once you push a set of changes to your publicly-available

server, those changes should not be rewritten. Git will attempt to

enforce this rule if you try to push changes which do not result in

a fast-forward merge (i.e. changes which do not share the same

history). It is possible to override this check, and there may be times

when it is necessary to rewrite an exported tree. Moving changesets

between trees to avoid conflicts in linux-next is one example.

But such actions should be rare. This is one of the reasons why

development should be done in private branches (which can be

rewritten if necessary) and only moved into public branches when

it’s in a reasonably advanced state.

	 As the mainline (or other tree upon which a set of changes is

based) advances, it is tempting to merge with that tree to stay on the

leading edge. For a private branch, rebasing can be an easy way to

keep up with another tree, but rebasing is not an option once a tree

is exported to the world. Once that happens, a full merge must be

done. Merging occasionally makes good sense, but overly frequent

merges can clutter the history needlessly.

	 Suggested technique in this case is to merge infrequently, and

generally only at specific release points (such as a mainline – rc

release). If you are nervous about specific changes, you can always

perform test merges in a private branch. The git “rerere” tool can be

useful in such situations; it remembers how merge conflicts were

resolved so that you don’t have to do the same work twice.

	 One of the biggest recurring complaints about tools like git is this:

the mass movement of patches from one repository to another makes

it easy to slip in ill-advised changes which go into the mainline below

the review radar. Kernel developers tend to get unhappy when they

see that kind of thing happening; putting up a git tree with unreviewed

or off-topic patches can affect your ability to get trees pulled in the

future. Quoting Linus:

You can send me patches, but for me to pull a git patch

from you, I need to know that you know what you’re doing,

and I need to be able to trust things *without* then having

to go and check every individual change by hand.	

(http://lwn.net/Articles/224135/)

 	 To avoid this kind of situation, ensure that all patches within

a given branch stick closely to the associated topic; a “driver

fixes” branch should not be making changes to the core memory

management code. And, most importantly, do not use a git tree to

bypass the review process. Post an occasional summary of the tree

to the relevant list, and, when the time is right, request that the tree

be included in linux-next.

	 If and when others start to send patches for inclusion into your

tree, don’t forget to review them. Also ensure that you maintain the

correct authorship information; the git “am” tool does its best in this

regard, but you may have to add a “From:” line to the patch if it has

been relayed to you via a third party.

	 When requesting a pull, be sure to give all the relevant information:

where your tree is, what branch to pull, and what changes will result

from the pull. The git request-pull command can be helpful in this

regard; it will format the request as other developers expect, and

will also check to be sure that you have remembered to push those

changes to the public server.

7.2: Reviewing Patches

	 Some readers will certainly object to putting this section with

“advanced topics” on the grounds that even beginning kernel

developers should be reviewing patches. It is certainly true that there

is no better way to learn how to program in the kernel environment

than by looking at code posted by others. In addition, reviewers are

forever in short supply; by looking at code you can make a significant

contribution to the process as a whole.

24

	 Reviewing code can be an intimidating prospect, especially

for a new kernel developer who may well feel nervous about

questioning code – in public – which has been posted by those

with more experience. Even code written by the most experienced

developers can be improved, though. Perhaps the best piece of

advice for reviewers (all reviewers) is this: phrase review comments

as questions rather than criticisms. Asking “how does the lock get

released in this path?” will always work better than stating “the

locking here is wrong.”

	 Different developers will review code from different points of

view. Some are mostly concerned with coding style and whether

code lines have trailing white space. Others will focus primarily

on whether the change implemented by the patch as a whole is a

good thing for the kernel or not. Yet others will check for problematic

locking, excessive stack usage, possible security issues, duplication

of code found elsewhere, adequate documentation, adverse effects

on performance, user-space ABI changes, etc. All types of review,

if they lead to better code going into the kernel, are welcome and

worthwhile.

8: For More Information

	 There are numerous sources of information on Linux kernel

development and related topics. First among those will always be the

Documentation directory found in the kernel source distribution. The

top-level HOWTO file is an important starting point; SubmittingPatches

and SubmittingDrivers are also something which all kernel developers

should read. Many internal kernel APIs are documented using the

kerneldoc mechanism; “make htmldocs” or “make pdfdocs” can be

used to generate those documents in HTML or PDF format (though

the version of TeX shipped by some distributions runs into internal

limits and fails to process the documents properly).

	 Various web sites discuss kernel development at all levels of detail.

Your author would like to humbly suggest http://lwn.net/ as a source;

information on many specific kernel topics can be found via the LWN

kernel index at:

		 http://lwn.net/Kernel/Index/

	 Beyond that, a valuable resource for kernel developers is:

		 http://kernelnewbies.org/

	 Information about the linux-next tree gathers at:

		 http://linux.f-seidel.de/linux-next/pmwiki/

	 And, of course, one should not forget http://kernel.org/, the

definitive location for kernel release information. There are a number

of books on kernel development:

	 •	 Linux Device Drivers, 3rd Edition (Jonathan Corbet,

Alessandro Rubini, and Greg Kroah-Hartman). Online at

http://lwn.net/Kernel/LDD3/.

	 •	 Linux Kernel Development (Robert Love).

	 •	 Understanding the Linux Kernel (Daniel Bovet and Marco

Cesati).

	 All of these books suffer from a common fault, though: they tend

to be somewhat obsolete by the time they hit the shelves, and they

have been on the shelves for a while now. Still, there is quite a bit

of good information to be found there. Documentation for git can be

found at:

http://www.kernel.org/pub/software/scm/git/docs/

http://www.kernel.org/pub/software/scm/git/docs/user-

manual.html

9: Conclusion

	 Congratulations to anybody who has made it through this long-

winded document. Hopefully it has provided a helpful understanding

of how the Linux kernel is developed and how you can participate in

that process.

	 In the end, it’s the participation that matters. Any open source

software project is no more than the sum of what its contributors put

into it. The Linux kernel has progressed as quickly and as well as it

has because it has been helped by an impressively large group of

developers, all of whom are working to make it better. The kernel is

a premier example of what can be done when thousands of people

work together toward a common goal.

	 The kernel can always benefit from a larger developer base,

though. There is always more work to do. But, just as importantly,

most other participants in the Linux ecosystem can benefit through

contributing to the kernel. Getting code into the mainline is the key

to higher code quality, lower maintenance and distribution costs, a

higher level of influence over the direction of kernel development,

and more. It is a situation where everybody involved wins. Fire up

your editor and come join us; you will be more than welcome.

info@linuxfoundation.org • www.linuxfoundation.org

