

T h e L i n u x F o u n d a t i o n

1 7 9 6 1 8 t h S t r e e t

S u i t e C

S a n F r a n c i s c o

C A 9 4 1 0 7 , U S A

+ 1 (4 1 5) 7 2 3 - 9 7 0 9

Version 5.0

Prepared by the Carrier Grade Linux Working Group

Copyright (c) 2005, 2006, 2007, 2011 by The Linux

Foundation. This material may be distributed only

subject to the terms and conditions set forth in the

Open Publication License, v1.0 or later (the latest

version is available at

http://www.opencontent.org/opl.shtml/).

Distribution of substantively modified versions of this

document is prohibited without the explicit

permission of the copyright holder.

Linux is a Registered Trademark of Linus Torvalds.

Other company, product, or service names may be the

trademarks of others.

Carrier Grade
Linux
Requirements
Definition

http://www.opencontent.org/opl.shtml

CONTRIBUTORS TO THE CGL 5.0 REQUIREMENTS DEFINITION INCLUDE

(IN ALPHABETICAL ORDER):

Last Name First Name Company

Anderson Matt HP

Anderson Tim MontaVista Software

Awad Majid Intel

Aziz Khalid HP

Badovinatz Peter IBM

Bozarth Brad Cisco

Cauchy Dan MontaVista Software

Chacron Eric Alcatel

Chen Terence Intel

Cherry John OSDL

Christopher Johnson Sun Microsystems

Cihula Jospeh Intel

Cress Andrew Intel

Dague Sean IBM

Dake Steven MontaVista Software

Flaxa Ralf Novell

Fleischer Julie Intel

Fleischer Julie OSDL

Fox Kevin Sun Microsystems

Gross Mark Intel

Haddad Ibrahim Ericsson

Heber Troy HP

Howell David P. Intel

Hu Michael Radisys

Ikebe Takashi NTT

Ishitsuka Seiichi NEC

Jagana Venkata IBM

Johnson Christopher P. Sun Microsystems

Kevin Fox Sun Microsystems

Kimura Masato NTT Comware

Krauska Joel Cisco

Kukkonen Mika Nokia

La Monte.H.P Yarrol Timesys

Lavonius Ville Nokia

Liu Bing Wei Intel

Lynch Rusty Intel

* MacDonald Joe Wind River Systems

Manas Saksena Timesys

Nakayama Mitsuo NEC

Peter-Gonzalez Inaky Intel

Pourzandi Makan Ericsson

Rossi Frederic Eicsson

Saksena Manas Timesys

Sakuma Junichi OSDL

Saskena Manas Timesys

Seiler Glenn Wind River Systems

Smarduch Mario Motorola

Takamiya Noriaki NTT Software

Weijers Gé

Witham Timothy D. OSDL

Wright Chris OSDL

Yarroll La Monte H.P. Tomesys

Zou Yixiong Intel

* Specification editor

Comments on the contents of this document should be sent to lf_carrier@linuxfoundation.org.

mailto:lf_carrier@linuxfoundation.org

TABLE OF CONTENTS

1 OVERVIEW OF CARRIER GRADE LINUX .. 1

2 DOCUMENT ORGANIZATION .. 4

3 REQUIREMENTS OVERVIEW ... 5

4 AVAILABILITY REQUIREMENTS DEFINITION .. 9

AVAILABILITY REQUIREMENTS ... 11

5 CLUSTERS REQUIREMENTS DEFINITION .. 25

CGL CLUSTERING ENVIRONMENT .. 27

RATIONALE FOR CGL CLUSTERING REQUIREMENTS .. 29

CLUSTER REQUIREMENT SUB-CATEGORIES ... 31

CLUSTERS REQUIREMENTS ... 32

DEFINITION OF CLUSTER TERMS .. 39

6. SERVICEABILITY REQUIREMENTS DEFINITION ... 46

SERVICEABILITY SUB-CATEGORIES .. 47

SERVICEABILITY REQUIREMENTS .. 47

7. PERFORMANCE REQUIREMENTS DEFINITION .. 61

PERFORMANCE FOCUS AREAS ... 62

PERFORMANCE REQUIREMENTS .. 67

8. STANDARDS REQUIREMENTS DEFINITION ... 72

STANDARDS REQUIREMENTS .. 74

9. HARDWARE REQUIREMENTS DEFINITION ... 95

HARDWARE SUB-CATEGORIES ... 96

HARDWARE REQUIREMENTS ... 96

10. SECURITY REQUIREMENTS DEFINITION .. 98

SECURITY DESIGN ... 99

SECURITY REQUIREMENTS .. 103

ITU-T RECOMMENDATION X.805 ET. AL. ... 114

SECURITY ENVIRONMENT ... 119

SECURITY THREATS ... 126

11. CGL GAPS .. 140

11. DEPRECATED REQUIREMENTS ... 160

REQUIREMENTS DEPRECATED IN CGL 4.0 .. 160

REQUIREMENTS DEPRECATED IN CGL 5.0 .. 163

12. REFERENCES .. 167

1 OVERVIEW OF CARRIER GRADE LINUX

In the time since the fourth major version of the Carrier Grade Linux Specification

has been published there has been a great shift in both the telecommunication

industry and the open source community. Most consumers of mobile

communications devices see them as conduits for communication, be that voice,

text, locations services, and general internet browsing. Providers need to ensure

that voice and data traffic shares the network seamlessly with the same

correctness and performance regardless of the packet. This pushes the need for

carrier-grade reliability to nearly every application server and it must be available

to the very edges of the network. This makes “old” ideas about scalability,

handling hundreds of thousands of calls with predictable performance, seem

almost quaint when carriers are now expecting to be able to handle that as well

as stream video, audio and packet traffic all with varying, but immutable, service

requirements. At the same time this level of reliability is seen as being needed

beyond the “carriers” because almost every server is connected to an ever-on

world-wide network with users awake every hour of the day. This has helped

many of the features published in earlier versions of the CGL specification to

become accepted parts of the Linux mainstream.

While the usage models and goals described above evolve, this is accompanied

by a simultaneous shift away from proprietary platform architectures to

commercial off-the-shelf (COTS) platforms and open software environments.

This continues to pick up pace but now there is also increasing demand for

integration with acceleration technologies and performance tuning options rarely

seen in the past. Open software and COTS hardware were once seen as a

means for rapid deployment of voice and data services; now they are considered

essential in many areas and without continued advancement and adoption in

both areas the competitive nature of the market risks fracturing the community

that has formed.

Carrier Grade Linux (CGL) still stands at the centre of all of this. More than

seven years ago a group of industry representatives from platform vendors, Linux

distribution suppliers and network equipment providers set out to define how

“Carrier Grade Linux” could enable environments with higher availability,

serviceability, and scalability requirements and formed the Carrier Grade Linux

Working Group. The working group has produced four major versions of a

specification to define the required capabilities. The result is that Linux

distribution suppliers have been able to demonstrate that they meet the needs of

telecommunications by disclosing how their products address the requirements in

this document.

Illustration 1: The Linux Ecosystem

Today the CGL working group represents interests from Linux distribution

suppliers as well as telecommunications industry equipment manufacturers,

service providers and end users. The CGL working group continues to strive to

bring these various groups together and to foster open communication and

collaboration, always with the goal of championing these requirements to the

community and bringing carrier-grade improvements to everyone.

High availability middleware components and service availability middleware that

run on CGL systems are addressed by organizations such as the Distributed

Management Task Force (DMTF), the Object Management Group (OMG), and

the Service Availability Forum (SAF). High availability hardware platforms

underlying CGL are addressed by organizations such as the PCI Industrial

Computer Manufacturers Group (PICMG) and the Intelligent Platform

Management Interface (IPMI). In addition, organizations like the SCOPE Alliance

address several layers applicable to carrier grade environments. The SCOPE

Alliance defines profiles for hardware, OS, and middleware; its purpose is to

help, enable, and promote the availability of open carrier grade platforms based

on commercial-off-the-shelf (COTS) hardware and software.

Illustration 2: Full Carrier Grade Application Stack

The CGL 5.0 specification is an upwardly compatible superset of the CGL 4.0

specification. As with the 4.0 specification, many requirements have been

deprecated, since at the time of publication they have been deemed to be

ubiquitous and therefore no longer relevant for the purposes of meeting carrier

requirements. These deprecated requirements represent the broad adoption

described earlier of carrier-grade objectives by the community and can be viewed

as validation of the objectives of the group as a whole.

In 2003 and 2004, member companies were producing communications products

based on the CGL 1.1 specifications. In the latter half of 2004 and 2005, Linux

distributors began to announce Linux offerings based on the CGL 2.0.2

specification. In 2006 several vendors registered for CGL 3.2. In 2007 CGL 4.0

introduced a new registration process and within weeks of the process being

available the first of the 4.0 distributions appeared. The CGL 5.0 registration

process will be very similar to the process used for the 4.0 specification and

therefore a very smooth transition is expected for carriers and equipment

providers as Linux distribution suppliers incorporate CGL 5.0 capabilities in 2011

and beyond.

As always, development is underway on many of the CGL capabilities that do not

appear in mainline distributions. While the CGL requirements are specified for

Linux-based platforms in the communications industry, a high availability, high

performance, scalable system is viewed as beneficial to the entire Linux user

community. These developments are both in areas identified here as

requirements and as gaps and while this version of the specification is expected

to be the definitive version for some time to come, the CGL working group

anticipates that many of the gap items today will become not only requirements in

the future but features so basic as to be expected of all Linux distributions.

Discussions of these developments are encouraged and can be directed to the

Carrier Grade community at lf_carrier@linuxfoundation.org.

2 DOCUMENT ORGANIZATION

For clarity and ease of use, the specification has been split by topic into the

following sections:

1. Requirements Overview

Describes the requirements and gap formatting, terminology used

throughout the remainder of the document and the registration

implications of requirements and gaps.

2. Availability Requirements Definition

Describes useful and necessary functionality for single node availability

and recovery.

3. Clustering Requirements Definition

Describes useful and necessary components to build a clustered set of

individual systems. The key target is clustering for high availability,

although load balancing and performance are secondary aims. It is

recognized that “one size fits all” is not achievable, so not all features will

always be used together.

4. Serviceability Requirements Definition

Describes useful and necessary features for servicing and maintaining a

system and coverage of tools that support serviceability.

5. Performance Requirements Definition

Describes useful and necessary features that contribute to adequate

performance of a system, such as real-time requirements. Also describes

base operating system components for supporting performance tools

(requirements for the tools themselves are not addressed).

6. Standards Requirements Definition

Provides references to useful and necessary APIs, specifications, and

standards, such as POSIX, IETF, and SA Forum standards.

7. Hardware Requirements Definition

Describes useful and necessary hardware-specific support that relates to

a carrier operating environment. This section is much reduced in size and

scope since the CGL 4.0 specification in recognition that support for

hardware is largely coming from hardware vendors and therefore is not

normally a requirement on the distribution supplier any longer.

8. Security Requirements Definition

Describes useful and necessary features for building secure systems. It is

recognized that “one size fits all” is not achievable, so not all features will

always be used together.

3 REQUIREMENTS OVERVIEW

Throughout the remainder of this document the terms requirement and gap will

be used extensively. The definitions of these terms as adopted by the Carrier

Grade Linux working group are as follows.

A requirement is an aspect, feature or application that is viewed as essential to

achieving and/or implementing one of the above carrier grade objectives (that is,

availability, clustering, serviceability, performance, hardware support, security or

standards implementation) that has at least one active, open source

implementation available. Depending on the priority of the requirement the open

source implementation may or may not be available on multiple architectures.

An application or implementation is considered open source so long as the code

has been provided under an OSI-approved license.

An application or implementation is considered active so long as it has not

obviously been abandoned by the developers and / or the community at large.

Signs of abandonment may be an official announcement by the developer with

no other developers adopting the project; it may be a lack of updates to support

new functionality or in response to new developments in the community or simply

to support new versions of the underlying software (for example a lack of updates

to support newer kernel versions). There is no strict definition of a reasonable

amount of time to expect updates in a project since mature projects move at a

pace quite different from emerging ones; however as a general guideline the

CGL working group has adopted a window of two (2) years as a good indication

of whether a project is still active.

A gap is an aspect, feature or application that is viewed as very important to

achieving and/or implementing one of the above carrier grade objectives that

does not currently have an open source (see above) implementation available.

The motivation behind the above definitions for requirements and gaps is to

ensure that there is no barrier to entry to the carrier grade distribution space and

to encourage developers to contribute their code back to the community under a

free and open source license. The Carrier Grade Linux working group believes

that this is the best way to both recognize carrier requirements and encourage

healthy collaboration and competition in the community.

The following table shows an example of a requirement:

ID Name Category Priority

STD.1.0 Linux Standard Base Compliance

http://www.linuxbase.org

Standards P1

CGL specifies that carrier grade Linux shall be compliant with at least the Linux Standard

Base (LSB) 3.0 The LSB 3.0 specifications has been split into a generic LSB core, a

generic module for C++, and a set of architecture specific modules. Required LSB 3.0

modules for CGL are:

 Generic LSB-Core

 Generic LSB-CXX

 For each supported architecture, one LSB-Core module and one LSB-CXX

module

The developer may choose to implement more than one architecture platform. In this

case, each supported architecture platform shall contain an implementation of at least

one architecture specific LSB-Core module and one architecture specific LSB-CXX

module.

NOTE: LSB 3.0 Certification program requires all 3 parts (core, C++, and graphics) to be

certificated. The graphics part will be a stretch for CGL to require as it is not essential for

carrier grade server type of applications. CGL WG to work with FSG/LSB to initiate the

subprofile certification program to allow CGL distribution to be certified.

Each requirement contains the following fields:

ID A unique identification number including:

 An acronym identifying a category for the

requirement (first field)

 An ID number for the requirement (second field)

 An ID number for a sub-requirement (third field). A

“0”in this field indicates the requirement is a stand-

http://www.linuxbase.org/

alone requirement. A number in this field

indicates this requirement is a sequentially

numbered sub-requirement

Name Short description of the requirement

Category The category to which the requirement is assigned. This

example contains Standards (STD) requirements.

Priority P1 – Required: Must be implemented and the

implementation must be disclosed as part of the CGL 5.0

registration process.

P2 – Disclosure: Does not have to be implemented but

the CGL 5.0 registration must include a statement

whether the requirement has been implemented and, if it

has been implemented, how the requirement is met in

the distribution.

Description Detailed description of the requirement.

A gap is follows a similar formatting:

ID PID Name

GAP.1.0 AVL.3.2 Forced Un-mount

CGL specifies that carrier grade Linux shall provide support for forced unmounting of a

file system. The un-mount shall work even if there are open files in the file system.

Pending requests shall be ended with the return of an error value when the file system is

unmounted.

Each gap contains the following fields:

ID A unique identification number including:

 The GAP identifier (first field)

 A unique ID number for the gap (second field)

 An ID number for a sub-requirement (third field). A

“0”in this field indicates the requirement is a stand-

alone requirement. A number in this field

indicates this requirement is a sequentially

numbered sub-requirement

PID Is the gap had previously been assigned an ID by an

earlier version of the CGL specification, it will be

identified here.

Name Short description of the gap.

Description Detailed description of the gap.

4 AVAILABILITY REQUIREMENTS DEFINITION

Telecommunication customers expect their voice and data services to always be

available. System availability is dependent on the availability of individual

components in the system. To help ensure 24/7 service, it must be possible to

perform system maintenance and system expansion on running

telecommunication networks and servers without disrupting the services they

implement. Systems must be able to withstand component failures, making

redundancy of components such as power supplies, fans, network adapters,

storage, and storage paths essential. Software failures can also significantly

impact the availability of a compute node, so robust application software,

middleware, and operating system software is required for single node

availability.

This section is a collection of requirements that address the robustness of a

single computing node. Availability is further enhanced by clustering individual

computing nodes so that a node cannot represent a single point of failure. The

single node requirements in the Availability section can be categorized as:

 On-line operations

 Redundancy

 Monitoring

 Robustness

ON-LINE OPERATIONS

On-line operations enable the system to continue to provide a service while the

software or the hardware is replaced or upgraded on the system. For instance,

when a file system needs repair, repair procedures may require rebooting the

system. However, CGL requires that it be possible to forcibly un-mount a file

system, allowing repair and remounting without rebooting. The ability to replace

or upgrade hardware such as disks, processors, memory, or even entire

processor/memory blades without bringing down that node or the network

contributes significantly to continuous service availability.

REDUNDANCY

A highly available system must be composed of redundant components and must

be able to take advantage of redundant hardware such that the system continues

to function when a component fails. Ideally, designs can eliminate all single

points of failure from a system. Using redundant communication paths, such as

redundant network ports and host adapters, together with network fail-over

software capabilities, such as Ethernet bonding, improve network availability.

Redundant storage paths, such as redundant fiber channel ports and host

adapters used with multipath I/O, improve storage availability. Redundancy of

memory components may not be possible, but error detection and correction can

be used to mask memory cell failures; CGL requires software Error Correction

Code (ECC) support. Single bit errors are reported when they are detected in the

hardware and logged by the kernel. The kernel invokes a panic routine whenever

uncorrectable multi-bit errors are detected.

MONITORING

Rapid detection of hardware or software failures requires health monitoring.

Health monitoring is also needed to check for hardware or software that is

beginning to fail, such as ECC memory checking, predictive analysis for disks,

and processes that do not respond in a predicted way. Examples of CGL

monitoring requirements include Non-Intrusive Monitoring of Processes and

Memory Over-commit Actions. The Non-Intrusive Monitoring of Processes

requirement detects abnormal behavior by a process, such as process death,

and initiates an action, such as the creation of a new process. The Memory Over-

commit Actions requirement monitors system memory usage and controls

process activity when memory usage exceeds specified thresholds.

ROBUSTNESS

A highly available system must be composed of redundant components and must

be able to take advantage of redundant hardware such that the system continues

to function when a component fails. Ideally, designs can eliminate all single

points of failure from a system. Using redundant communication paths, such as

redundant network ports and host adapters, together with network fail-over

software capabilities, such as Ethernet bonding, improve network availability.

Redundant storage paths, such as redundant fiber channel ports and host

adapters used with multipath I/O, improve storage availability. Redundancy of

memory components may not be possible, but error detection and correction can

be used to mask memory cell failures; CGL requires software Error Correction

Code (ECC) support. Single bit errors are reported when they are detected in the

hardware and logged by the kernel. The kernel invokes a panic routine whenever

uncorrectable multi-bit errors are detected.

AVAILABILITY REQUIREMENTS

AVL.2.0 SINGLE-BIT ECC HANDLING

ID Name Category Priority

AVL.2.0 Single-bit ECC handling Availability P2

CGL specifies that carrier grade Linux shall provide a mechanism for reporting when

hardware error checking and correcting (ECC) detects and/or recovers from a single-bit

ECC error.

AVL.2.1 MULTI-BIT ECC HANDLING

ID Name Category Priority

AVL.2.1 Multi-bit ECC handling Availability P2

CGL specifies that carrier grade Linux shall provide a panic trigger mechanism when

hardware error checking and correcting (ECC) detects multi-bit ECC errors.

AVL.4.1 VM STRICT OVER-COMMIT

ID Name Category Priority

AVL.4.1 VM Strict Over-Commit Availability P1

CGL specifies that carrier grade Linux shall provide the ability to control kernel virtual

memory allocation adjustments based on the specific needs of the system. Control of

virtual memory shall include but not be limited to the following:

 Heuristic over-commit handling. Obvious over-commits of address space are

refused. Used for a typical system. It ensures a seriously wild allocation fails

while allowing over-commit to reduce swap usage. root is allowed to allocate

slightly more memory in this mode. This is the default.

 Always over-commit. Appropriate for some scientific applications.

 Don't over-commit. The total address space commit for the system is not

permitted to exceed swap + a configurable percentage (default is 50) of physical

RAM. Depending on the percentage you use, in most situations this means a

process will not be killed while accessing pages but will receive errors on memory

allocation as appropriate.

AVL.5.3 PROCESS-LEVEL NON-INTRUSIVE APPLICATION MONITOR

ID Name Category Priority

AVL.5.3 Process-Level Non-Intrusive Application

Monitor

Availability P1

CGL specifies that carrier grade Linux shall provide control and management capabilities

for processes that cannot be altered to incorporate a monitoring API. Such capabilities

are known as non-intrusive monitoring. These capabilities must be implemented

programmatically using commands or scripts.

Another issue for many such processes is that the start script itself may spawn an

application process that is not under the control of the management process. This sub-

requirement assumes that this does not happen, and the child process remains under

the control of the management entity.

Capabilities required:

 The following capabilities must be enabled for controlling processes:

The ability to start a process (or a list of processes)

The ability to stop a process (or a list of processes)

 The following capabilities must be enabled for monitoring processes:

 The ability to detect the unexpected exit of a process

 The ability to configure a set of actions in response to an unexpected exit of a
process

 The following services must be provided beyond those currently provided by
inittab:

 The ability to configure whether to restart the application if the process dies

 A configurable amount of time to wait before restarting the application

 A limit on the number of times to restart the application

AVL.6.0 DISK PREDICTIVE ANALYSIS

ID Name Category Priority

AVL.6.0 Disk Predictive Analysis Availability P1

CGL specifies that carrier grade Linux shall provide capabilities to assist in monitoring

storage systems. The aim of this support is to assist in predicting situations likely to lead

to failure of disks. This allows preventive action to be taken to avoid the failure and

resulting disruption of service.

AVL.7.1.1 MULTI-PATH ACCESS TO STORAGE: MULTI-PATH DETECTION

ID Name Category Priority

AVL.7.1.1 Multi-Path Access to Storage: Multi-Path

Detection

Availability P1

CGL specifies that carrier grade Linux shall provide a mechanism to enable multiple

access paths from a node to storage devices. The software shall determine if multiple

paths exist to the same port of the I/O device.

AVL.7.1.2 MULTI-PATH ACCESS TO STORAGE: I/O BALANCING

ID Name Category Priority

AVL.7.1.2 Multi-Path Access to Storage: I/O

Balancing

Availability P1

CGL specifies that carrier grade Linux shall provide a mechanism to enable multiple

access paths from a node to storage devices. The software shall determine if multiple

paths exist to the same port of the I/O device, and, with configurable controls, balance

I/O requests across multiple host bus adapters. If multiple paths exist to the same device

over two separate device ports on the same host bus adapter, those I/Os will not be

balanced.

AVL.7.1.3 MULTI-PATH ACCESS TO STORAGE: AUTOMATIC PATH FAILOVER

ID Name Category Priority

AVL.7.1.3 Multi-Path Access to Storage: Automatic

Path Failover

Availability P1

CGL specifies that carrier grade Linux shall provide a mechanism to enable multiple

access paths from a node to storage devices. Handling a path failure must be automatic.

AVL.7.1.4 MULTI-PATH ACCESS TO STORAGE: FAILED PATH REACTIVATION

ID Name Category Priority

AVL.7.1.4 Multi-Path Access to Storage: Failed Path

Reactivation

Availability P1

CGL specifies that carrier grade Linux shall provide a mechanism to enable multiple

access paths from a node to storage devices. A mechanism must be provided for the

reactivation of failed paths, allowing them to be placed back in service.

AVL.7.1.5 MULTI-PATH ACCESS TO STORAGE: AUTOMATIC PATH

CONFIGURATION

ID Name Category Priority

AVL.7.1.5 Multi-Path Access to Storage: Automatic

Path Configuration

Availability P1

CGL specifies that carrier grade Linux shall provide a mechanism to enable multiple

access paths from a node to storage devices. It must be possible to automatically

determine and configure multiple paths.

AVL.7.1.6 MULTI-PATH ACCESS TO STORAGE: AUTOMATIC VOLUME

CONFIGURATION

ID Name Category Priority

AVL.7.1.6 Multi-Path Access to Storage: Automatic

Volume Configuration

Availability P1

CGL specifies that carrier grade Linux shall provide a mechanism to enable multiple

access paths from a node to storage devices. Automatic configuration shall allow

automatic multi-path configuration of complete disks and partitions located on those

disks.

AVL.7.1.7 MULTI-PATH ACCESS TO STORAGE: ROOT FILE SYSTEM HOSTING

ID Name Category Priority

AVL.7.1.7 Multi-Path Access to Storage: Root File

System Hosting

Availability P1

CGL specifies that carrier grade Linux shall provide a mechanism to enable multiple

access paths from a node to storage devices. A multipath device feature that allows

multipath detection and mapping early in the boot process must be provided so that the

root file system can exist on a multipath device.

AVL.7.1.8 MULTI-PATH ACCESS TO STORAGE: LINK FAILURE REPORTING

ID Name Category Priority

AVL.7.1.8 Multi-Path Access to Storage: Link Failure

Reporting

Availability P1

CGL specifies that carrier grade Linux shall provide a mechanism to enable multiple

access paths from a node to storage devices. The mechanism should implement error

logging functions that clearly identify the failing device path.

AVL.8.1 FAST LINUX RESTART BYPASSING SYSTEM FIRMWARE

ID Name Category Priority

AVL.8.1 Fast Linux Restart Bypassing System

Firmware

Availability P1

CGL specifies that carrier grade Linux shall provide a mechanism to speed up operating

system initialization by bypassing the system firmware when one instance of Linux

reboots to another instance of Linux.

AVL.9.0 BOOT IMAGE FALLBACK MECHANISM

ID Name Category Priority

AVL.9.0 Boot Image Fallback Mechanism Availability P2

CGL specifies that carrier grade Linux shall provide a mechanism that enables a system

to fallback to a previous "known good" boot image in the event of a catastrophic boot

failure (i.e. failure to boot, panic on boot, failure to initialize HW/SW). System images are

captured from the "known good" system and the system reboots to the latest good

image. This mechanism would allow an automatic fallback mechanism to protect against

problems resulting from system changes, such as program updates, installations, kernel

changes, and configuration changes."

AVL.10.0 APPLICATION LIVE PATCHING

ID Name Category Priority

AVL.10.0 Application Live Patching Availability P2

CGL specifies that carrier grade Linux shall provide a mechanism and framework by

which a custom application can be built so that it can be upgraded by replacing symbols

in its live process. Dynamic replacement of symbols allows a process to access

upgraded functions or values without requiring a process restart and in many

circumstances can lead to improved process availability and uptime. The mechanism

should be applied only to user applications. Patch to underlying distribution software

component may lose distribution support.

AVL.12.0 NFS CLIENT PROTECTION ACROSS SERVER FAILURES

ID Name Category Priority

AVL.12.0 NFS Client Protection Across Server

Failures

Availability P2

CGL specifies that carrier grade Linux shall provide mechanisms that allow an NFS

server to have failover capability to provide service continuity upon a node failure. The

NFS service has to be resumed on another node without any impact on NFS clients

other than the retransmission of pending requests (open files must remain open). Clients

authenticated on the old server must remain authenticated on the new server.

AVL.13.1 PARALLEL USER INITIALIZATION DURING STARTUP

ID Name Category Priority

AVL.13.1 Parallel User Initialization During Startup Availability P2

CGL specifies that the user initialization procedure executed by the program /sbin/init

shall provide a mechanism to allow multiple init scripts to run in parallel. CGL further

specifies that a service is only started once its dependent services have started.

AVL.15.0 FAST APPLICATION RESTART MECHANISM

ID Name Category Priority

AVL.15.0 Fast Application Restart Mechanism Availability P2

CGL specifies that carrier grade Linux shall provide a mechanism that enables a quick

application restart. Typical applications in a carrier environment use multiple processes

with inter-process communications. As applications become more complex, application

initialization times become longer.

To speed up application initialization, the mechanism shall provide the functionality to

simultaneously save memory images of multiple processes (including the kernel

resources used by each process) and to restore the images.

When the application completes initialization, including making connections between

processes and setting up kernel resources for inter-process communication, the

application invokes a save function that makes a copy of the memory images of the

process and kernel resources. If the application hangs, the mechanism restores the

memory images and kernel resources and restarts the application.

AVL.17.0 MULTIPLE FIB SUPPORT

ID Name Category Priority

AVL.17.0 Multiple FIB Support Availability P2

CGL specifies that Linux shall support multiple Forwarding Information Base (FIB) quick

look-up tables with forwarding addresses to allow better server virtualization of

overlapping addresses. An FIB is a table that contains a copy of the forwarding

information in the IP routing table. All hooks/changes required to support multiple FIBs

shall be added.

AVL.21.0 ETHERNET LINK BONDING USING IPV4

ID Name Category Priority

AVL.21.0 Ethernet link bonding using IPV4 Availability P1

CGL specifies that carrier grade Linux shall support bonding of multiple Ethernet NICs

within a single node using IPV4. The bonding supports the following functions:

 Ethernet link aggregation: Supports multiple Ethernet cards to be bonded for

bandwidth aggregation.

 Ethernet link failover: Supports automatic failover of an IP address from one

Ethernet NIC to another within a single node using the Ethernet bonding. Some

mode of bonding requires IEEE 802.3ad support on switches; however, other

modes do not require special protocol support.

AVL.21.1 ETHERNET LINK BONDING USING IPV6

ID Name Category Priority

AVL.21.1 Ethernet link bonding using IPV6 Availability P1

CGL specifies that carrier grade Linux shall support bonding of multiple Ethernet NICs

within a single node using IPV6. The bonding supports the following functions:

 Ethernet link aggregation: Supports multiple Ethernet cards to be bonded for

bandwidth aggregation.

 Ethernet link failover: Supports automatic failover of an IP address from one

Ethernet NIC to another within a single node using the Ethernet bonding. Some

modes of bonding require IEEE 802.3ad support on switches; however, other

modes do not require special protocol support.

AVL.22.0 SOFTWARE RAID 1 SUPPORT

ID Name Category Priority

AVL.22.0 Software RAID 1 support Availability P1

CGL specifies that carrier grade Linux shall provide RAID 1(Mirroring) support so that the

OS maintains duplicate sets of all data on separate disk drives. RAID 1 support shall

allow booting off of selected mirror disk drive even if the other drive is failed. RAID 1

implementation shall provide a user-controllable parameter to throttle the syncing

operation. Support can be configured out if desired.

AVL.23.0 WATCHDOG TIMER PRE-TIMEOUT INTERRUPT

ID Name Category Priority

AVL.23.0 Watchdog Timer Pre-Timeout Interrupt Availability P1

CGL specifies that carrier grade Linux shall provide support for a watchdog timer pre-

timeout interrupt. Where the hardware supports such a capability an interrupt handler

routine will be called before the real timeout occurs.

AVL.24.0 WATCHDOG TIMER INTERFACE REQUIREMENTS

ID Name Category Priority

AVL.24.0 Watchdog Timer Interface Requirements Availability P1

CGL specifies that carrier grade Linux shall provide the ability to use an interface to reset

the hardware watchdog timer, where the hardware supports such a capability. This

timeout value shall be a configurable item. A configurable action can be performed when

a timeout occurs.

AVL.25.0 APPLICATION HEARTBEAT MONITOR

ID Name Category Priority

AVL.25.0 Application Heartbeat Monitor Availability P1

CGL specifies that carrier grade Linux shall provide an application heartbeat service that

allows applications to register to be monitored via specified APIs. The mechanism shall

use periodic synchronized events (heartbeats) between an application and the monitor. If

a registered application fails to provide a heartbeat, the monitor shall report the events.

The application heartbeat service shall be available to any process or sub-process

(thread) entity on the system. A process or thread may register for multiple heartbeats.

AVL.26.0 RESILIENT FILE SYSTEM SUPPORT

ID Name Category Priority

AVL.26.0 Resilient File System Support Availability P1

CGL specifies that carrier grade Linux shall provide support for the installation of a file

system that is resilient against system failures in terms of recovering rapidly upon reboot

without requiring a full, traditional fsck. This is normally achieved using logging or

journaling techniques.

AVL.27.0 KERNEL LIVE PATCHING

ID Name Category Priority

AVL.27.0 Kernel Live Patching Availability P2

CGL specifies that carrier grade Linux shall provide a mechanism for symbols, functions,

or variables within a running kernel to be replaced with new symbols, functions, or

variables. CGL further specifies this operation be completed without a system shutdown

or restart

AVL.28.1 FILE SYSTEM DE-FRAGMENTATION

ID Name Category Priority

AVL.28.1 File System De-fragmentation Availability P1

CGL specifies that carrier grade Linux shall provide support for a file system that allows

for de-fragmentation of on-disk data. It is expected that the file system will not be

mounted or otherwise in use at the time.

AVL.28.2 MULTI-ARCHITECTURE FILE SYSTEM SUPPORT

ID Name Category Priority

AVL.28.2 Multi-Architecture File System Support Availability P1

CGL specifies that carrier grade Linux shall provide support for a file system where the

metadata and data are stored independent of host CPU word length and endianness.

AVL.28.3 FILE SYSTEM METADATA INTEGRITY CHECKSUM

ID Name Category Priority

AVL.28.3 File System Metadata Integrity

Checksum

Availability P1

CGL specifies that carrier grade Linux shall provide support for a file system that

guarantees file system metadata and data consistency and fast recovery in the event of

interrupted updates with checksums on all metadata.

AVL.28.4 FILE SYSTEM BLOCK CHECKSUMMING

ID Name Category Priority

AVL.28.4 File System Block Checksumming Availability P2

CGL specifies that carrier grade Linux shall provide support for a file system that

provides end-to-end checksums of all blocks currently in use on the file system.

AVL.28.5 FILE SYSTEM MULTIPLE ACCESS PROTECTION

ID Name Category Priority

AVL.28.5 File System Multiple Access

Protection

Availability P2

CGL specifies that carrier grade Linux shall provide support for shared, simultaneous

read and write access to file system data that is assured protection against accidental

corruption of the data and/or metadata.

AVL.28.6 FILE SYSTEM SNAPSHOTS

ID Name Category Priority

AVL.28.6 File System Snapshots Availability P2

CGL specifies that carrier grade Linux shall provide support for a file system that allows

the creation of atomic snapshots of volumes while mounted. These snapshots must be

valid filesystem images that can be mounted as if they were the original volume at the

time of the snapshot.

AVL.28.7 FILE SYSTEM CLONES

ID Name Category Priority

AVL.28.7 File System Clones Availability P2

CGL specifies that carrier grade Linux shall provide support for a file system that allows

atomic backups while the volume is mounted and in use. These backups should be

writable where subsequent updates to the file system will not be reflected in the original

and therefore each can be considered a fork of a single, live file system image.

AVAILABILITY REFERENCES

POSIX:

 Open Group References:

http://www.opengroup.org/

http://www.unix.org/online.html

http://www.opengroup.org/onlinepubs/007908799/

 POSIX conformance data on Linux:

http://posixtest.sf.net

 POSIX Technical Corrigendum 1 text:

http://www.opengroup.org/pubs/catalog/u057.htm

 POSIX Specification with current Technical Corrigendum:

http://www.unix.org/version3/

Linux Standard Base (LSB) http://www.linuxbase.org/

Free Standards Group http://www.freestandards.org/

Service Availability Forum (SAF) http://www.saforum.org/

Internet Engineering Task Force (IETF) http://www.ietf.org/rfc.html

5 CLUSTERING REQUIREMENTS DEFINITION

The CGL working group conducted a clusters usage model study from which they

learned that no single clustering model meets the needs of all carrier

applications. So CGL takes a more general approach to defining clustering

requirements. CGL defines the functional components of a carrier grade High

Availability Cluster (HAC). The requirements for other cluster models, such as a

scalability cluster, a server consolidation cluster, and a High Performance

Computing (HPC) cluster, have been treated as secondary to requirements for

the HAC cluster model. See Illustration 3.

http://www.opengroup.org/
http://www.unix.org/online.html
http://www.opengroup.org/onlinepubs/007908799/
http://posixtest.sf.net/
http://www.opengroup.org/pubs/catalog/u057.htm
http://www.unix.org/version3/
http://www.linuxbase.org/
http://www.freestandards.org/
http://www.saforum.org/
http://www.ietf.org/rfc.html

A CGL high availability cluster is characterized by a set of two or more computing

nodes between which an application or workload can migrate depending on a

policy-based failover mechanism. Essentially, the cluster nodes can “cover” for

each other. Carrier grade services must maintain an uptime of 5 nines (99.999%)

or better and, quite often, a failing service must restart in sub-second time frames

to maintain continuous operation.

A loosely coupled cluster model with no shared storage is a basic clustering

technique that is suitable for many types of telecommunications applications

servers. This model eliminates the possibility of a failed shared component

affecting the availability of the service or the availability of system.

Whether shared storage is implied or not, a cluster provides the following

advantages:

Illustration 3: HAC Cluster View

 Prevents a node from being a single point of failure. With hardware faults,

the failing node can be replaced or repaired without affecting the service

uptime (no unscheduled downtime)

 Allows a software or kernel upgrade to be completed on each node

separately without affecting the availability of the service

 Isolates failing nodes from the cluster and enables service to continue

using the remaining healthy nodes

 Allows hardware upgrades on each node separately without affecting

service availability

 Enables increased capacity to meet load/traffic increases

CGL clustering functional requirements include support for redundancy (no single

point of failure), not only at the cluster node level, but at the hardware level as

well, including fans, power supplies, memory ECC, communication paths, and

storage paths. To support continuous operation of carrier grade services,

requirements are defined for node failure detection and various forms of service

failover, such as application, node address, and connections failovers.

The CGL clustering requirements are framed around industry standard

programming interfaces. The Service Availability Forum (SA Forum) has

developed an Application Interface Specification (AIS) that defines service

interfaces for clustered applications. The specification is OS-independent and is

being used in both proprietary and open source cluster developments. The SA

Forum AIS specifies a membership service API, a checkpoint service API, an

event service API, a message service API, and a lock service API. AIS also

specify an availability management framework (AMF) that provides resource

management and application failover policy in the cluster.

CGL CLUSTERING ENVIRONMENT

As stated previously, we learned from our usage model study that no one

clustering model fits and meets the needs of all carrier applications. We are not

going to create such model. Instead, a more generalized CGL clustering model is

presented in this document that serves to identify the functional need of each

component of a High Availability Cluster environment. This general model is

illustrated in the diagram below, which shows the need for redundancy, stateful

failover, and shared storage in a cluster application. This diagram is not a

topology of any specific cluster deployment. It is up to application developers and

system administrators to determine the usage and configuration of their cluster

systems.

The functions shown in Illustration 3 are described below:

 1+1 Hot Standby Cluster is composed of one active primary node and

one hot standby node and possibly a set of shared storage. It includes

redundant paths between cluster nodes and to the storage.

 Shared Storage provides a set of mirrored disks (for redundant data) and

can be achieved with software or hardware.

 Redundant Paths include the multiple communication paths between

cluster nodes (CCPs) and the multiple paths from a node to access the

storage (CSPs).

 N+M Cluster is the extension of a 1+1 hot standby cluster. In this model,

the cluster can be configured with additional hot or cold standby nodes as

needed by the application. Functional needs of the data check pointing

capability and the access to the shared storage remain the same.

 Data Check Pointing is part of the cluster services. It constantly

synchronizes the in-memory states and data of an application allowing the

cluster to provide stateful failover of the application from one node to

another node.

 Access Shared Storage – A cluster application stores and retrieves

application data to and from the redundant shared storage. These data

are persistent on the mirrored disks.

 Service Entry Point Director routes and directs which cluster node shall

provide the service to the service requester.

 Cluster Management Console is a node in the system that manages all

cluster nodes, but is not part of the cluster membership. It provides a view

of the cluster to an operator. It monitors the hardware status of the cluster

nodes and monitors cluster events such as cluster node failure. The

operator can use it to perform some cluster node failure recovery

functions, such as the re-boot of a cluster node allowing the node to re-

join the cluster membership.

 Users are the service requesters. A user can be a human being, an

external device, or another computer system .

End users of carrier grade equipment have prioritized the need for HAC cluster

configurations as:

 2-node (active/hot standby) cluster that supports:

◦ Checkpointing of in-memory application states for rapid application

failover

◦ Shared storage access from a single node at a time.

◦ Redundant access to shared storage from a single node

◦ Redundant inter-node communication paths

 2-node (active/active) cluster that supports:

◦ Concurrent access to shared storage.

 N node (active/active) cluster that supports:

◦ Storage “scalability”

◦ Improved service performance in accessing shared storage.

 N+M node (active/hot or cold standby) cluster that supports:

◦ Extension of active/standby pair.

RATIONALE FOR CGL CLUSTERING REQUIREMENTS

The requirements described in this section are intended to be independent of

specific projects, products, or implementations.

The cluster requirements are framed around industry standard application

programming interfaces. For these clustering requirements, the SA Forum

Application Interface Specification will be used. The SA Forum AIS services that

apply to this specification are:

 SA Cluster Membership Service API (Chapter 6)

 SA Checkpoint Service API (Chapter 7)

 SA Event Service API (Chapter 8)

 SA Message Service API (Chapter 9)

 SA Lock Service API (Chapter 10)

The Availability Management Framework API (Chapter 5) provides the following

services to SA-aware applications:

 Registration and un-registration

 Health monitoring

 Availability management

 Protection group management

 Error reporting

Other requirements are described in this document are not related to cluster

application APIs, but define requirements that are needed in a cluster. These

include items such as shared storage support, synchronized time, and cluster

management functions such as monitoring, control, and diagnostics. Items such

as a clustered file system and clustered volume manager are also included in this

document as they are essential building blocks for HA clustering, although they

have no established APIs.

CLUSTERING REQUIREMENT SUB-CATEGORIES

Requirement Sub-

Category

Sub-Category Description

CMS Membership Service

CES Event Service

CCS Checkpoint Service

CCM Communication and Messaging

CLS Lock Service

CAF Availability Framework

CMON Monitoring

CCON Control

DIAG Diagnostics

CSM Shared Storage Management

CFH Fault Handling

CLUSTERING REQUIREMENTS

CFH.1.0 CLUSTER NODE FAILURE DETECTION

ID Name Category Priority

CFH.1.0 Cluster Node Failure Detection Cluster P2

CGL specifies that carrier grade Linux shall provide a fast, communication based cluster

node failure mechanism that is reflected in a cluster membership service. At a minimum,

the cluster node failure mechanism maintains a list of the nodes that are currently active

in the cluster. Changes in cluster membership must result in a membership event that

can be monitored by cluster services, applications, and middleware that register to be

notified of membership events. Fast node failure detection must not depend on a failing

node reporting that the node is failing. However, self-diagnosis may be leveraged to

speed up failure detection in the cluster. This requirement does not address the issue of

how to prevent failing nodes from accessing shared resources (see CFH.3.0 Application

Fail-Over Enabling).

Fast node failure detection shall include the following capabilities:

 Ability to provide cluster membership health monitoring through cluster

communication mechanisms.

 Support for multiple, redundant communication paths to check the health of

cluster nodes.

 Support for fast failure detection. The guideline is a maximum of 250ms for failure

detection. Since there is tradeoff between fast failure detection and potentially

false failures, the health-monitoring interval must be tunable.

 Ability to provide a cluster-membership change event to middleware and

applications.

Cluster node failure detection must use only a small percentage of the total cluster

communication bandwidth for membership health monitoring. The guideline is that the

bandwidth used by the health monitoring mechanism shall be linear with respect to the

number of bytes per second per node.

CFH.2.0 PREVENT FAILED NODE FROM CORRUPTING SHARED RESOURCES

ID Name Category Priority

CFH.2.0 Prevent Failed Node From Corrupting

Shared Resources

Cluster P1

CGL specifies that carrier grade Linux shall provide a way to fence a failed or errant

node from shared resources, such as SAN storage, to prevent the failed node from

causing damage to shared resources. Since the surviving nodes in the cluster will want

to failover resources, applications, and/or middleware to other surviving nodes in the

cluster, the cluster must make sure it is safe to do the failover. Killing the failed node is

the easiest and safest way to protect shared resources from a failing node. If a failing

node can detect that it is failing, the failing node could kill itself (suicide) or disable its

ability to access shared resources to augment the node isolation process. However, the

cluster cannot depend on the failing node to alter the cluster when it is failing, so the

cluster must be proactive in protecting shared resources.

External Specification Dependencies: This requirement is dependent on hardware to

provide a mechanism to reset or isolate a failed or failing node.

CFH.3.0 APPLICATION FAIL-OVER ENABLING

ID Name Category Priority

CFH.3.0 Application Fail-Over Enabling Cluster P2

CGL specifies that carrier grade Linux shall provide mechanisms for failing over

applications in a cluster from one node to another. Applications and nodes are monitored

and a failover mechanism is invoked when a failure is detected. Once a failure is

detected, the application failover mechanism must determine which policies apply to this

failover scenario and then begin the process to start a standby application or initiate the

re-spawn of an application within 1 second.

NOTE: The full application failover time is dependent upon application and node failure

detection, the time to apply the failover policies, and the time it takes to start or restart

the application. The aggregate failover time for an application must allow the cluster to

maintain carrier grade application availability.

CSM.1.0 STORAGE NETWORK REPLICATION

ID Name Category Priority

CSM.1.0 Storage Network Replication Cluster P1

CGL specifies that carrier grade Linux shall provide a mechanism for storage network

replication. The storage network replication shall provide the following:

 A network replication layer that enables RAID-1-like disk mirroring, using a

cluster-local network for data.

 Resynchronization of replicated data after node failure and recovery such that

replicated data remains available during resynchronization.

CSM.2.0 CLUSTER-AWARE VOLUME MANAGEMENT FOR SHARED STORAGE

ID Name Category Priority

CSM.2.0 Cluster-aware Volume Management for

Shared Storage

Cluster P2

CGL specifies that carrier grade Linux shall provide management of logical volumes on

shared storage from different cluster nodes. Volumes in such an environment are usually

on physical disks accessible to multiple nodes. Volume management shall include the

following:

 Enabling remote nodes to be informed of volume definition changes.

 Providing consistent and persistent cluster-wide volume names.

 Managing volumes from different cluster nodes consistently.

 Providing support for the striping and concatenation of storage. Clustered

mirroring of shared storage is not included in this requirement (see CSM.3.0

Shared Storage Mirroring).

CSM.4.0 REDUNDANT CLUSTER STORAGE PATH

ID Name Category Priority

CSM.4.0 Redundant Cluster Storage Path Cluster P1

CGL specifies that Linux shall provide each cluster node with the ability to have

redundant access paths to shared storage. CGL Availability Requirement: AVL.7.1.x

Multi-Path Access To Storage

CSM.6.0 CLUSTER FILE SYSTEM

ID Name Category Priority

CSM.6.0 Cluster File System Cluster P1

CGL specifies that carrier grade Linux shall provide a cluster-wide file system. A

clustered file system must allow simultaneous access to shared files by multiple

computers. Node failure must be transparent to file system users on all surviving nodes.

A clustered file system must provide the same user API and semantics as a file system

associated with private, single-node storage.

CSM.7.0 SHARED STORAGE CONSISTENT ACCESS

ID Name Category Priority

CSM.7.0 Shared Storage Consistent Access Cluster P1

CGL specifies that carrier grade Linux shall provide a consistent method to access

shared storage from different nodes to ensure partition information isn't changed on one

node while a partition is in use on another node that would prevent the change.

CCM.2.2 CLUSTER COMMUNICATION SERVICE: FAULT HANDLING

ID Name Category Priority

CCM.2.2 Cluster Communication Service: Fault

Handling

Cluster P1

CGL specifies that carrier grade Linux shall provide a reliable communication service

that detects a connection failure, aborts the connection, and reports the connection

failure. An established connection must react to and report a problem to the application

within 100 ms upon any kind of service failure, such as a process or node crash. The

connection failure detection requirement must offer controls that allow it to be tailored to

specific conditions in different clusters. An example is to allow the specification of the

duration of timeouts or the number of lost packets before declaring a connection failed.

CAF.2.1 ETHERNET MAC ADDRESS TAKEOVER

ID Name Category Priority

CAF.2.1 Ethernet MAC Address Takeover Cluster P1

CGL specifies a mechanism to program and announce MAC addresses on Ethernet

interfaces so that when a SW Failure event occurs, redundant nodes may begin

receiving traffic for failed nodes.

CAF.2.2 IP TAKEOVER

ID Name Category Priority

CAF.2.2 IP Takeover Cluster P1

CGL specifies a mechanism to program and announce IP addresses (using gratuitous

ARP) so that when a SW Failure event occurs, redundant nodes may begin receiving

traffic for failed nodes.

CDIAG.2.1 CLUSTER-WIDE IDENTIFIED APPLICATION CORE DUMP

ID Name Category Priority

CDIAG.2.1 Cluster-Wide Identified Application Core

Dump

Cluster P1

CGL specifies that carrier grade Linux shall provide a cluster-aware application core

dump that uniquely identifies which node produced the core dump. For instance, if a

diskless node dumps core files to network storage, the core dump will be uniquely

identified as originating from that node.

CDIAG.2.2 CLUSTER-WIDE KERNEL CRASH DUMP

ID Name Category Priority

CDIAG.2.2 Cluster-Wide Kernel Crash Dump Cluster P1

CGL specifies that carrier grade Linux shall provide a cluster-aware kernel crash dump

that uniquely identifies which node produced the crash dump. For instance, if a diskless

node dumps crash data to network storage, the data will be uniquely identified as

originating from that node.

CDIAG.2.3 CLUSTER WIDE LOG COLLECTION

ID Name Category Priority

CDIAG.2.3 Cluster Wide Log Collection Cluster P1

CGL specifies that carrier grade Linux shall provide a cluster-wide logging mechanism. A

cluster-wide log shall contain node identification, message type, and cluster time

identification. This cluster-wide log may be implemented as a central log or as the

collection of specific node logs.

CDIAG.2.4 SYNCHRONIZED/ATOMIC TIME ACROSS CLUSTER

ID Name Category Priority

CDIAG.2.4 Synchronized/Atomic Time Across Cluster Cluster P1

CGL specifies that carrier grade Linux shall provide cluster wide time synchronization

within 500mS, and must synchronize within 10 seconds once the time synchronization

service is initiated. In a cluster, each node must have be synchronized to the same wall-

clock time to provide consistency in access times to shared resources (i.e. clustered file

system modification and access times) as well as time stamps in cluster-wide logs.

CLUSTERING REFERENCES

 Birman, Kenneth P. 1997. Building Secure and Reliable Network Applications.

Manning Publishing Company and Prentice Hall.

 Birman, Ken, et al (circa 2000). “The Horus and Ensemble Projects:

Accomplishments and Limitations.”

 Chandra, Tushar, Vassos Hadzilacos, Sam Toueg. June 1996. “The Weakest

Failure Detector for Solving Consensus”.

 Davis, Roy G. 1993. VAX Cluster Principles. Digital Press.

 Dolev, Danny, and Dalia Malki. 1996. “The Transis Approach to High Availability

Cluster Communication.” Comm. of the ACM 39 (April): 64-70.

 Pfister, Greg. 1998. “In Search of Clusters”, Second Edition, Prentice Hall PTR.

 Simmons, Chuck, and Patty Greenwald. 1994. “Oracle Lock Manager

Requirements,” Oracle Corporation.

 Thomas, Kristin. 2001. “Programming Locking Applications,” IBM Corporation.

 van Renesse, Robbert, Kenneth P. Birman, and Silvano Maffeis. 1996. “HORUS:

A flexible Group Communication System.” Comm. of the ACM 39 (April): 76-83.

 Service Availability Forum http://www.saforum.org/

 Open Cluster Framework http://www.opencf.org

The following references discuss virtual synchrony:

 Birman, Kenneth.1987. "Exploiting virtual synchrony in distributed systems"

 Extended Virtual Synchrony: http://www.cs.jhu.edu/~yairamir/dcs-94.ps

http://www.saforum.org/
http://www.opencf.org/
http://www.cs.jhu.edu/~yairamir/dcs-94.ps

The following cluster-related whitepapers can be found at

http://developer.osdl.org/cherry/cluster-whitepapers/.

 OSDL Cluster Architecture (OSDL-cluster.html)

 Carrier Grade Linux Clustering Model (cluster_alcatel.doc)

 Ericsson Clustering Model Proposal (cluster_ericsson.pdf)

 The Telecom System View (cluster_intel.pdf)

 Foundational Components of Service Availability (cluster_mv.pdf)

 NTT Clustering Model (cluster_ntt.pdf)

DEFINITION OF CLUSTER TERMS

[] indicates a term that is defined elsewhere in the definitions of terms.

APPLICATION

A set of [processes], running on a computer [system], that provides a service to the

[users] of this [system]. An application is usually referred to as the non operating system

portion of the software in a [system].

AVAILABILITY

Availability is the amount of time that a [system] [service] is provided in relation to the

amount of time the [system] [service] is not provided. [System] [service] downtime could

be the result of [system] [failures] (unscheduled downtime) or for things like upgrades,

system relocation, or backups (scheduled downtime). A [system] [service] is provided if

the [service] is functioning at an acceptable level of [performance] or [scalability].

Availability is commonly expressed as a percentage (see [five-nines] or [six-nines]).

Percent Availability = (time service is provided / total time) X 100

CLUSTER

Two or more computer [nodes] in a [system] used as a single computing entity to provide

a [service] or run an [application] for the purpose of [high availability], [scalability], and

distribution of tasks.

COMMUNICATION

http://developer.osdl.org/cherry/cluster-whitepapers/

The exchange of information between [processes]. These [processes] can be running on

the same [node] (intra-node) or on different [nodes] (inter-nodes). The information

includes [events] and [messages].

DATA

Numerical or other information represented in a form suitable for processing by a

[process].

DATA CHECKPOINTING

The mechanism by which [application] state is transmitted from an active [service unit] to

one or more standby [service units].

EVENT

A [communication] with or without data which notifies a set of zero or more [processes]

that something took place. This communication can be either within a [node] and/or

between [nodes].

EVENT SERVICE

A publish/subscribe event service that manages [events]. [Events] may be grouped into

named channels and handle attributes such as priority, ordering, retention times, and

persistence. A [subscriber] informs the event mechanism that it wishes to receive a

certain event. A [publisher] posts an event to the event mechanism to be delivered to all

[subscribers] of that event. This way the [publisher] and [subscriber] are decoupled, they

do not have to directly know about each other, just about the event. Events may be

asynchronous or synchronous. A [publisher] posting a synchronous event will block or

be informed when all [subscribers] have received the event. The [publisher] of an

asynchronous event will not block waiting for delivery or be informed when the event is

delivered to any [process].

FAILBACK

The process to migrate back to a [node] after it has been [repaired]. It can be controlled

or automatic.

 FAILOVER

The ability to automatically switch a [service] or capability to a [redundant] [node],

[system], or [network] upon the [failure] or abnormal termination of the currently-active

[node], [system], or [network].

FAILURE

The inability of a [system] or [system] component to perform a required function within

specified limits. A failure may be produced when a [fault] is encountered. Examples of

failures include invalid data being provided, slow response time, and the inability for a

[service] to take a request. Causes of failure can be hardware, firmware, software,

network, or anything else that interrupts the [service].

FAILURE DETECTION

A failure is ultimately caused by an unmasked [fault] in the [system]. Failure detection is

the process, usually from external view, to detect a [failure] of the [service] the [system]

is providing.

FAULT

An error in a computer [system] or the [service] it provides. A fault may be masked and

not impact the [application] or the [service] it provides. A fault can also be classified as

transient or permanent. A fault is often associated with a [system] defect in the software

or hardware. A fault can be caused by external stimulus to the [system].

FAULT CONFINEMENT

Equivalent to [fault isolation].

FAULT DETECTION

Ability to detect an abnormal condition (device failure, temperature error, etc.) in the

[system].

FAULT DIAGNOSIS

The localization of a [fault] to its repair unit.

FAULT ISOLATION

Ability to protect the rest of the [system] from the effects of a [fault].

FAULT PREDICTION

Detecting or forecasting [faults].

FAULT TOLERANCE

Ability for a [system] to mask a set of [failures] from impacting the [service] it provides.

FIVE-NINES

Five-nines is measured as 99.999% [service] [availability]. It is equivalent to 5 minutes a

year of total planned and unplanned downtime of the [service] provided by the [system].

GROUP MULTICAST

The sending of a single [message] to a set of destination [processes].

HAND-OVER

Equivalent to [switch-over]

LOCK SERVICE

The lock [service] is a distributed lock [service], suitable for use in a [cluster], where

[processes] in different [nodes] might compete with each other for access to shared

resources. A lock [service] may provide the following capabilities: exclusive and shared

access, synchronous and asynchronous calls, lock timeout, trylock, deadlock detection,

orphan locks, and notification of waiters.

MESSAGE

A [communication] with [data] in a form suitable for transmission. A message may

contain attributes of the [communication] such as source, destination, time stamps, and

authorization information, etc. It may also contain [application] specific information.

MTTF

Mean Time To [Failure]. The interval in time which the [system] can provide [service]

without [failure].

MTTR

Mean Time To [Repair]. The interval in time it takes to resume [service] after a [failure]

has been experienced.

NETWORK

A connection of [nodes] which facilitates [communication] among them. Usually, the

connected nodes in a network use a well defined [network protocol] to communicate with

each other.

NETWORK PROTOCOLS

Rules for determining the format and transmission of data. Examples of network

protocols include TCP/IP, UDP, etc.

HIGH AVAILABILITY

The state of a [system] having a very high ratio of [service] uptime compared to [service]

downtime. Highly available systems are typically rated in terms of number of nines such

as [five-nines] or [six-nines].

NODE

A single computer unit, in a [network], that runs with one instance of a real or virtual

operating system.

NODE MEMBERSHIP

The mechanism by which computer [nodes] join and leave a cluster as well as the

mechanism to detect [node] [failure]. A [node] is deemed to be a member if it has joined

the [cluster] successfully. A [node] is deemed to be a non-member if it has not joined the

cluster or if it has left the cluster. A detected [failure] may result in the [node] leaving the

cluster or being isolated from the cluster, depending on node membership policy.

PERFORMANCE

The efficiency of a [system] while performing tasks. Performance characteristics include

total throughput of an operation and its impact to a [system]. The combination of these

characteristics determines the total number of activities that can be accomplished over a

given amount of time.

PROCESS

A single instance of a software program running on a single [node].

PROCESS GROUP

A collection of processes registered within [cluster] software.

PROCESS GROUP MEMBERSHIP

The mechanism by which [process] registration, un-registration, and [failure detection] is

managed. A [process] is deemed to be a member if it has registered with the [process

group] successfully. A [process] is deemed to be a non-member if it has not registered

with the process group. A [detected] failure may cause the [process] to become a non-

member, depending on the process group membership policy. A [process] can gracefully

un-register to depart from the process group. The process group membership also

handles authorization to join the membership. Process group membership depends

upon [node membership] if process group membership is available on multiple [nodes].

Process group membership is used to execute application [failover] policy.

PUBLISHER

A [process] that sends [events].

RAS

[Reliability], [availability], and [serviceability]

RECOVERY

To return a failing component, [node] or [system] to a working state. A failing component

can be a hardware or a software component of a [node] or [network]. Recovery can also

be initiated to work around a [fault] that has been detected; ultimately restoring the

[service].

REDUNDANCY

Duplication of hardware, software, or network components in a [system] to avoid [Single

Points of Failure].

RELIABILITY

The continuation of [service] in the absence of [failure]. Reliability is commonly

measured as the [MTTF] of a [system].

REPAIR

The process to remove a [fault].

REPLICATION

A component, [node], or [system] which is configured identically to a base component,

[node] or [system] for the purpose of [fault tolerance], [performance], or ease of [service].

SCALABILITY

How well a solution to some problem will work when the size of the problem increases?

In the CGL context, the scalability is defined as the ability of a [system] to provide the

same level of [high availability] performance when the work load of the [service]

increases. The solution to increase the [system] or [service] scalability can be software

or hardware oriented.

SERVICE

A set of functions provided by a computer [system]. Examples of communications

services include media gateway, signal, or soft switch types of applications. Some

general examples of services include web based or database transaction types of

applications.

SERVICE UNIT

A collection of one or more software [processes] that provide [service] to a [user].

SERVICEABILITY

The capability for a [system] to be maintained and updated. Often, serviceability is

measured by how easy a maintenance task can be performed or how quickly a [system]

[fault] can be tracked down and repaired so that the [system] can resume the [service].

SINGLE POINT OF FAILURE

Any component or [communication] path within a computer [system] that would result in

an interruption of the [service] if it failed.

SIX-NINES

Six-nines is measured as 99.9999% [service] [availability]. It is equivalent to 30 seconds

a year of total planned and unplanned downtime of the [service] provided by the

[system].

SUBSCRIBER

A [process] that receives [events]. A [subscriber] may subscribe to one or many

[events]. A subscriber may join and leave an event subscription at any time without

involving the publishers.

SWITCH-OVER

Ability to switch to a [redundant] [node], [system], or [network] upon a normal termination

of the currently-active [node], [system], or [network]. Switch-over can happen with or

without human intervention.

SYSTEM

A computer system that consists of one computer [node] or many nodes connected via a

computer network mechanism.

USER

An external entity that acquires [service] from a computer [system]. It can be a human

being, an external device, or another computer [system].

6. SERVICEABILITY REQUIREMENTS DEFINITION

This section specifies a set of useful and necessary features for servicing and

maintaining a system. Telecommunication systems such as management

servers, signaling servers, and gateways must have the capability to be

managed and monitored remotely, have robust software package management

for installations and upgrades, and have mechanisms for capturing and analyzing

failure information. A single point of control is required for applications, software,

hardware, and data for functions such as data movement, security, backup, and

recovery.

CGL systems will support remote management standards such as Simple

Network Management Protocol (SNMP), Common Information Model (CIM), and

Web-Based Enterprise Management (WBEM). Local management standards

include IPMI and the Service Availability Forum's Hardware Platform Interface

(HPI).

Debuggers, application and kernel dumpers, watchdog triggers, and error

analysis tools are needed to debug and isolate failures in a system. Diagnostic

monitoring of temperature controls, fans, power supplies, storage media, the

network, CPUs, and memory are needed for quick failure detection and failure

diagnosis.

SERVICEABILITY SUB-CATEGORIES

Requirement Sub-

Category

Sub-Category Description

SMM Management and Monitoring

SPM Software Package Management

SFA Failure Analysis

SERVICEABILITY REQUIREMENTS

SMM.3.1 SERIAL CONSOLE OPERATION

ID Name Category Priority

SMM.3.1 Serial Console Operation Serviceability P1

CGL specifies that carrier grade Linux shall provide support for a connection to a system

console via a serial port on the system where a serial port exists. All output that would

appear on a local console must appear on the remote console.

SMM.3.2 NETWORK CONSOLE OPERATION

ID Name Category Priority

SMM.3.2 Network Console Operation Serviceability P1

CGL specifies that Linux shall provide support for a management console connection via

a network port in addition to providing the standard support for a management console

connection via a serial port.

SMM.4.0 PERSISTENT DEVICE NAMING

ID Name Category Priority

SMM.4.0 Persistent Device Naming Serviceability P1

CGL specifies that carrier grade Linux shall provide consistent device naming

functionality. The user-space system name of the device shall be maintained when the

device is removed and reinstalled even if the device is plugged into a different bus, slot,

or adapter. A device name shall be assigned, based on hardware identification

information using policies set by the administrator.

SMM.5.0 KERNEL PROFILING

ID Name Category Priority

SMM.5.0 Kernel Profiling Serviceability P1

CGL specifies that Linux shall support profiling of a running kernel and applications to

identify bottlenecks and other kernel and application statistics.

SMM.5.1 APPLICATION PROFILER (WAS AVL.19.0)

ID Name Category Priority

SMM.5.1 Application Profiler (was AVL.19.0) Serviceability P1

CGL specifies that carrier grade Linux shall provide a mechanism to profile critical

resources of the kernel and applications. The critical resources that are profiled by this

mechanism shall include (but are not limited to):

 Time used

 Memory used

 Number of semaphores, mutexes, sockets, and threads/child processes in use

 Number of open files. Monitoring shall happen at configurable, periodic intervals

or as initiated by the user.

SMM.7.1 TEMPERATURE MONITORING

ID Name Category Priority

SMM.7.1 Temperature Monitoring Serviceability P1

CGL specifies that carrier grade Linux shall provide a capability that supports the

monitoring of system temperature settings and conditions.

SMM.7.2 FAN MONITORING

ID Name Category Priority

SMM.7.2 Fan Monitoring Serviceability P1

CGL specifies that carrier grade Linux shall provide a capability that supports the

monitoring of system fan settings and conditions.

SMM.7.3 POWER MONITORING

ID Name Category Priority

SMM.7.3 Power Monitoring Serviceability P1

CGL specifies that carrier grade Linux shall provide a capability that supports the

monitoring of system power settings and conditions.

SMM.7.4 MEDIA MONITORING

ID Name Category Priority

SMM.7.4 Media Monitoring Serviceability P1

CGL specifies that carrier grade Linux shall provide a capability that supports the

monitoring of media settings and conditions for system media, such as hard disks or

hardware specific disk sub-systems.

SMM.7.5 NETWORK MONITORING

ID Name Category Priority

SMM.7.5 Network Monitoring Serviceability P1

CGL specifies that carrier grade Linux shall provide a capability that supports the

monitoring of system network settings and conditions.

SMM.7.6 CPU MONITORING

ID Name Category Priority

SMM.7.6 CPU Monitoring Serviceability P1

CGL specifies that carrier grade Linux shall provide a capability that supports the

monitoring of CPU settings and conditions, such as current utilization totals, per process

totals and trends, and current speed settings.

SMM.7.7 MEMORY MONITORING

ID Name Category Priority

SMM.7.7 Memory Monitoring Serviceability P2

CGL specifies that carrier grade Linux shall provide a capability that supports the

monitoring of memory conditions, such as current utilization totals, and per process totals

and trends.

SMM.8.1 KERNEL MESSAGE STRUCTURING

ID Name Category Priority

SMM.8.1 Kernel Message Structuring Serviceability P1

CGL specifies that carrier grade Linux shall provide support that allows the structuring of

kernel messages using an event log format to provide more information to identify the

problem and its severity, and to allow client applications registered for the fault event to

take policy-based corrective action.

SMM.8.2 PLATFORM SIGNAL HANDLER

ID Name Category Priority

SMM.8.2 Platform Signal Handler Serviceability P1

CGL specifies that carrier grade Linux shall provide an infrastructure to allow "hardware

errors" to be logged using the event logging mechanism. A default handler shall be

provided.

SMM.8.3 REMOTE ACCESS TO EVENT LOG

ID Name Category Priority

SMM.8.3 Remote Access to Event Log Serviceability P2

CGL specifies that carrier grade Linux shall provide support for a remote access

capability that allows a centralized system to access the Linux OS event log information

of a remote system.

SMM.9.0 DISK AND VOLUME MANAGEMENT

ID Name Category Priority

SMM.9.0 Disk and Volume Management Serviceability P1

CGL specifies that carrier grade Linux shall provide support for the installation of a

subsystem that supports hard disks to be managed without incurring downtime:

 Physical disks can be grouped into volumes and the volume definitions can be

modified without downtime.

 Filesystems that are defined within volumes can be enlarged without requiring

unmounting.

 Support can be configured out if desired.

SMM.12.0 REMOTE BOOT SUPPORT (WAS PMT.2.0)

ID Name Category Priority

SMM.12.0 Remote Boot Support (was PMT.2.0) Serviceability P1

CGL specifies that carrier grade Linux shall provide support for remote booting across

common LAN and WAN communication media to support diskless systems.

SMM.13.0 DISKLESS SYSTEMS (WAS PMS.4.0)

ID Name Category Priority

SMM.13.0 Diskless Systems (was PMS.4.0) Serviceability P1

CGL specifies that carrier grade Linux shall provide for Linux on diskless systems.

SMM.15 THREAD NAMING

ID Name Category Priority

SMM.15 Thread Naming Serviceability P2

Linux Foundation CGL specifies that carrier grade Linux shall provide the ability to

uniquely identify threads with a symbolic name in addition to the existing process and

thread ID mechanism. These symbolic names can be assigned via an API exposed to

applications and can be assigned either at process / thread creation time or at any time

after the process / thread has been started.

SMM.16 SYSTEM BLACK BOX

ID Name Category Priority

SMM.16 System Black Box Serviceability P2

CGL specifies that carrier grade Linux shall provide a system-wide monitoring and

logging facility, a system black box, with at least the following attributes:

 Kernel and operating system events must be logged to the black box.

 An API must be provided for applications to log events to the black

box.

 An API must be provided that allows controlling which events are

logged and from what facilities.

 All logged events must be stored in a way that will available after a

system crash / reboot.

 Tools must be provided to analyze events following a system crash /

ID Name Category Priority

reboot.

SMM.17 DISCOVERY OF PLATFORM CPU ARCHITECTURE

ID Name Category Priority

SMM.17 Discovery of Platform CPU

Architecture

Serviceability P1

CGL specifies that carrier grade Linux shall provide a mechanism for applications to

discover at runtime the number of caches and the sizes of each. This mechanism must

present such architectural information in a format that is uniform across platforms.

SMM.18 API FOR NON-UNIFORM MEMORY ARCHITECTURES

ID Name Category Priority

SMM.18 API for Non-Uniform Memory

Architectures

Serviceability P1

CGL specifies that carrier grade Linux shall implement the notion of a latency domain,

defined as a set of CPUs with directly attached, local memory. All systems shall have at

least one latency domain, representing uniform memory architecture. Additional latency

domains can exist for non-uniform memory architectures, in which case carrier grade

Linux will provide an API that allows a process to:

 Identify the NUMA topology of the system including:

■ The latency of each latency domain

■ The number of CPUs

■ The amount of memory in the latency domain

 Specify the desired memory allocation policy including:

■ Local: Memory allocations will first occur from the local

latency domain.

■ Specific: Memory allocations will first occur from the

specified latency domains.

■ Interleaved: Memory allocations will be spread across

all latency domains.

SPM.1.0 REMOTE PACKAGE UPDATE AND INSTALLATION

ID Name Category Priority

SPM.1.0 Remote Package Update and Installation Serviceability P1

CGL specifies that carrier grade Linux shall provide a remote software package update

feature. The package shall include functions that allow kernel modules and application

software to be installed or upgraded remotely, while minimizing downtime of the system.

The use of the term "remotely" does not imply a central package management platform,

nor does it preclude such a system. This requirement only necessitates that a single

device may be upgraded without requiring the administrator to be physically at the

device. Note: Due to the wide range of platforms and applications in use, CGL does not

specify a specific downtime limit metric. Downtime targets will vary based on the system

application.

SPM.2.0 NO SYSTEM REBOOT FOR UPGRADE OF KERNEL MODULES

ID Name Category Priority

SPM.2.0 No System Reboot for Upgrade of Kernel

Modules

Serviceability P2

CGL specifies that carrier grade Linux shall provide remote software installation and

upgrade mechanisms that requiring no system reboots:

 No reboot shall be required to upgrade kernel modules.

 Remote software installation and upgrade mechanisms will not require more

reboots than the same upgrade done using the console.

SPM.2.1 NO SYSTEM REBOOT FOR APPLICATION PACKAGE UPDATE

ID Name Category Priority

SPM.2.1 No System Reboot for Application

Package Update

Serviceability P1

CGL specifies that carrier grade Linux shall provide remote software installation and

upgrade mechanisms that require no system reboots:

 No reboot shall be required to upgrade user-space applications provided by CGL

system software.

SPM.3.0 VERSION AND DEPENDENCY CHECKING VIA PACKAGE

MANAGEMENT

ID Name Category Priority

SPM.3.0 Version and Dependency Checking via

Package Management

Serviceability P1

CGL specifies that carrier grade Linux shall provide remote software installation and

upgrade capabilities that include provisions for version compatibility and dependency

checking at the package level.

SPM.4.0 UPGRADE LOG

ID Name Category Priority

SPM.4.0 Upgrade Log Serviceability P2

CGL specifies that carrier grade Linux shall provide remote software installation and

upgrade mechanisms that perform transaction logging of dates, times, changes, and the

identity of the user performing a change.

SFA.1.0 KERNEL PANIC HANDLER ENHANCEMENTS

ID Name Category Priority

SFA.1.0 Kernel Panic Handler Enhancements Serviceability P1

CGL specifies that carrier grade Linux shall provide enriched capabilities in response to

a system panic. Currently the default system panic behavior is to print a short message

to the console and halt the system. CGL systems shall provide a set of configurable

functions, including:

 Logging the panic event to the system event log

 Cycling power (rebooting) or powering off

 Forcing a crash dump

CGL shall support enhanced kernel panic reporting, at a minimum supporting proper

resolution of in-kernel symbols. This will make kernel panic reports useful to

administrators that do not have access to the kernel for which the report was generated.

SFA.2.1 LIVE KERNEL REMOTE DEBUGGER

ID Name Category Priority

SFA.2.1 Live Kernel Remote Debugger Serviceability P1

CGL specifies that carrier grade Linux shall provide support for remote debugging of a

live kernel. This shall include support over serial and/or local Ethernet.

SFA.2.2 DYNAMIC PROBE INSERTION

ID Name Category Priority

SFA.2.2 Dynamic Probe Insertion Serviceability P1

CGL specifies that carrier grade Linux shall provide support for the ability to dynamically

insert software instrumentation into a running system in the kernel or applications.

 The instrumentation must be insertable to any part of the kernel.

 The instrumentation should allow control to be passed to a user-provided module.

 The instrumentation should not require interactive direction, i.e., no user sitting at

the kernel debugger.

 The user-provided modules should have access to data the kernel would

normally be expected to have access to, e.g., hardware registers, kernel

SFA.2.3 USER SPACE DEBUG SUPPORT FOR THREADS

ID Name Category Priority

SFA.2.3 User Space Debug Support for Threads Serviceability P1

CGL specifies that carrier grade Linux shall provide support to fully enable debugging of

multi-threaded programs. This support should allow any actions available for debugging

a single-threaded (non-threaded) process be extended to be available for every thread in

a multi-threaded process. CGL shall provide specific additional debugging capabilities

that are unique to multi-threaded applications:

 Automatic notification of a new thread.

 List of threads and the ability to switch among them.

 Apply specific debug commands to a list of threads.

SFA.2.4 MULTITHREADED CORE DUMP SUPPORT FOR THREADED

APPLICATIONS

ID Name Category Priority

SFA.2.4 Multithreaded Core Dump Support for

Threaded Applications

Serviceability P1

CGL specifies that carrier grade Linux shall provide support for correctly storing core

dumps of multi-threaded user-space applications.

SFA.3.0 KERNEL DUMP: ANALYSIS

ID Name Category Priority

SFA.3.0 Kernel Dump: Analysis Serviceability P1

CGL specifies that carrier grade Linux shall provide support for tools to enable enhanced

analysis of kernel dumps. These enhancements must include, but not be limited to, the

following capabilities:

 Access to kernel structures

 Virtual-to-physical address translation

 Module access

 Preserve all tools and CPU states

SFA.4.0 KERNEL DUMP: LIMIT SCOPE

ID Name Category Priority

SFA.4.0 Kernel Dump: Limit Scope Serviceability P1

CGL specifies that carrier grade Linux shall provide support for configuring the amount of

system information that is retained. The minimum type of configuration would be only

kernel memory or all system memory. A way must be provided for a system

administrator to specify which type of system dump should be performed.

SFA.8.0 KERNEL FLAT/GRAPH EXECUTION PROFILING

ID Name Category Priority

SFA.8.0 Kernel Flat/Graph Execution Profiling Serviceability P1

CGL specifies that carrier grade Linux shall provide support for profiling of the running

kernel using a prof or gprof style of recording trace information during system execution.

SFA.10.0 KERNEL DUMP: CONFIGURABLE DESTINATIONS

ID Name Category Priority

SFA.10.0 Kernel Dump: Configurable Destinations Serviceability P1

CGL specifies that carrier grade Linux shall provide support for producing and storing

kernel dumps as follows:

 It must be possible to store kernel dumps to disk and across a network.

 Regardless of the specific dump target, dumps must be preserved across the

next system boot.

7. PERFORMANCE REQUIREMENTS DEFINITION

This section is a collection of requirements for the Linux operating system that

describe the performance and scalability requirements of typical communications

systems. Key requirements include a system's ability to meet service deadlines;

to scale in order to take advantage of symmetric multiprocessing (SMP),

simultaneous multithreading (SMT) technology, and large memory systems; and

to provide efficient, low latency communication.

Without predictable execution latencies, it is possible that service deadlines

would not be met, resulting in dropped calls, unreasonable call-response

characteristics, or even dropping the entire service from active operation. Soft

real-time scheduling provides predictable CPU scheduling latencies within

defined loads. Latency and scheduling parameters are required to be

configurable at runtime, including the scheduling quantum being configurable to

1ms or less. However, the services use many resources other than the CPU;

therefore, protection against priority inversion, priority inheritance to system

resources, and appropriate system resource scheduling are also required to

maintain predictable scheduling.

To take advantage of scalable hardware architectures, CGL specifies support for

SMP and SMT, which includes process affinity, task exclusive binding to logical

CPUs and interrupt affinity capabilities. Large memory systems of more than 4GB

of physical memory are needed to handle the memory demands of scalable

communication applications.

Protocol stacks are required to be prioritized so certain protocols may take

scheduling priority over less important network protocols. To improve latency and

reduce CPU usage in network communications, zero-copy network protocols

may be needed. IPv6 forwarding tables are required to be compact and use a

small amount of memory. Support in the Linux Kernel for a 9000 byte Maximum

Transfer Unit (MTU) is required.

PERFORMANCE FOCUS AREAS

REAL-TIME PROCESSING

SCOPE

The telecommunications application market faces new technical challenges with

the introduction of architectures such as Next Generation Networks and IP

multimedia services for mobile networks.

Real-time behavior is a major issue for new applications and protocol classes

based on IP services such as VoIP, SIGTRAN, and RTP, where real time

behavior drives the quality of service for end-users. Enhancements in real-time

behavior would allow Linux to be used for some applications that are currently

run on other real-time operating systems.

This document does not make a distinction between hard real-time and soft real-

time support in the Linux kernel. Real-time capabilities are defined in terms such

as maximum scheduling latency.

HIGH RESOLUTION TIMERS

Incorporating high-resolution timers based on a 1 ms tick, rather than the

currently supported 10 ms tick, will enhance the real-time task scheduling

capabilities of Linux. If hardware platform support is provided for a 1 ms tick, the

kernel will no longer be required to program a specific timer to elapse after 1 ms,

eliminating overhead.

This feature enables:

 A 1 ms quantum to be managed for task scheduling.

 A 1 ms timer to be managed without requiring the kernel to program a

specific clock. Configuring the kernel with a 1 ms tick value rather than the

current 10 ms tick value allows rescheduling to occur every 1 ms in

response to a periodic clock timer interrupt.

POSIX REAL-TIME FEATURES

POSIX real-time and advanced real-time features enable better support for real-

time, portable applications at the API level.

PROTECTION AGAINST PRIORITY INVERSION

Priority inversion is an issue for real-time application programming because

scheduling priorities defined by design may be inverted causing unexpected

latencies. Priority inversion happens when a lower priority thread blocks a higher

priority one. The most general case is when a lower priority thread holds a

resource needed by the higher priority thread.

Priority inversion protection can be provided in the Linux kernel by dynamically

modifying the thread scheduling priority when lower priority threads are holding

resources.

Transitive priority inheritance is required to deal with cases where several

mutexes are used by several threads.

Scheduling policy can also be dynamically modified by the protection

mechanism. For example, time-sharing threads can be promoted to real-time

FIFO threads. This can have undesired consequences, however, as timesharing

processes are generally not coded with FIFO policy in mind. A means should be

provided for the client application to specify priority inheritance or priority

protection capabilities for the internal mutexes that they use.

APIs providing this capability should be implemented in such a way so that they

will perform correctly if they are promoted to real-time policies.

MESSAGE QUEUES WITH PRIORITY PROMOTION

The priority inheritance protection mechanism can be extended by using a

dynamic priority promotion system for message queues. In such a system, the

priority of the receiver thread is promoted by the scheduler according to the

message priority, enabling processing of urgent messages with high scheduling

priority.

HANDLING INTERRUPTS AS KERNEL THREADS

Since interrupt service routines are not allowed to sleep, preemption locks in

interrupt handlers normally can‟t be changed to mutexes. To change preemption

locks that are placed in interrupt service routines, interrupt service routines (aside

from the timer interrupt routines) could be handled by kernel threads.

Mapping interrupt service routines onto real-time kernel threads enables interrupt

handlers to be assigned priorities and soft real-time processes to be given higher

priorities than interrupt handlers, allowing better designs. An additional benefit is

the reduction of critical sections in interrupt handlers.

SYMMETRIC MULTI-PROCESSING

REDUCING SMP CONTENTION

Improving performance and scalability in an SMP system can be accomplished

by reducing resource contention through process affinity interrupt affinity, and

Hyper-Threading support.

SMP kernel critical sections can be handled by:

 A spin-lock

 A mutex, if not used in an interrupt handler

Generally, the spin-lock option is the faster in terms of CPU time, but it requires

that preemption be disabled and introduces processor-level latency when the

resource is already locked. The mutex option adds mutex and context switching

costs, but latency remains at the process level.

Using spin-lock with a high number of processors can lead to high latency

depending on the critical section length.

Quality of service must be taken into account for following cases:

 When timers are armed in parallel on several processors

 When concurrent file accesses occur

 When shared-memory is accessed by several processors

PROCESS AFFINITY

Process affinity provides for load balancing at the application level. When

process affinity is used, it provides more efficient caching. For example, it must

be possible to bind real-time processes to specified processors. Other processes

in the systems do not need to be assigned to specified processors.

INTERRUPT HANDLER AFFINITY

Assigning the top half of interrupt handlers to a single processor enables load

balancing of interrupt handlers. The bottom half and top half of each interrupt

handler should be assigned to the same CPU to reduce inter-processor

contention.

HYPER-THREADING SUPPORT

Because the logical Hyper-Threaded processors share a cache, the scheduler

only needs to keep threads attached to one of the adjacent logical processors.

The scheduler can move threads between adjacent logical processors with no

performance degradation because the cache is stable between the two logical

processors.

MEMORY USAGE

As CPU capabilities increase, memory demands also increase as more

communication contexts can be handled per system. Memory related

requirements are oriented toward high physical memory (HIGHMEM) and virtual

memory.

SUPPORT OF MORE THAN 4G PHYSICAL MEMORY

Support for more than 4G of physical memory is a requirement for 32-bit and 64-

bit processor architectures.

COMMUNICATION SERVICE

Communication services have a major impact on performance of

telecommunications applications. Performance of Linux stacks should be

evaluated as follows:

 Message delivery latency and throughput

 Resource usage including CPU and memory usage

 Load balancing capability on an SMP system

IPV4, IPV6, MIPV6 FORWARDING TABLES FAST ACCESS AND COMPACT MEMORY

The speed at which packets can be routed is limited by the time it takes to

perform the forwarding table lookup for each packet.

When a basic lookup method is used, such as the BSD binary trie, the number of

nodes equal to the length of the address in bits is potentially traversed in the

forwarding table, generating an equivalent number of memory accesses. The

current Linux implementation is not highly scalable.

Methods faster than those currently available should be implemented to support

2000 routes updated per second and up to 500,000 routes with low lookup

latency. The tradeoff between memory and access latency should also be

addressed.

See “Survey and taxonomy of IP address lookup algorithms “ at

http://mia.ece.uic.edu/~papers/Surveys/pdf00000.pdf.

CLUSTER COMMUNICATION SERVICE

A cluster benefits from a cluster specific communication service that addresses

specific issues such as latency, ordering, and recovery. A cluster communication

service can achieve better performance than a general communication service

when used in a cluster, because it has knowledge of the local topology, including

the cluster membership.

DIFFSERV SUPPORT

Support should be provided for Differentiated Services (RFCs 2474 and 2475) for

IPv4 to enable quality of service and traffic control.

PRIORITIZED PROTOCOL PROCESSING

http://mia.ece.uic.edu/~papers/Surveys/pdf00000.pdf

A prioritized protocol processing mechanism enables a high-priority process to

quickly obtain data from the network even if massive packets arrive for multiple

processes. It is based on a protocol priority assignment mechanism that allows a

higher scheduling priority to be given to the protocol with higher priority.

I/O AND FILE SYSTEMS

NETWORK STORAGE REPLICATION

A network storage replication service uses local network and device resources.

Performance depends on the local network and storage devices used.

A network storage replication service provides a lower performance level

compared to local storage access. The relative difference must be less than 30

% in terms of user throughput in normal conditions when mirrored devices are

synchronized.

Upon device resynchronization, the user throughput should not be reduced more

than 25% compared to normal conditions.

AVAILABILITY AND INITIALIZATION

APPLICATION PRE-LOADING

The CGL 2.0 requirement for application pre-loading should be extended to

enhance dynamic loading performance. Often, several seconds are spent in the

dynamic ELF loader for symbol relocation.

PERFORMANCE REQUIREMENTS

PRF.1.4 HIGH-RESOLUTION TIMERS

ID Name Category Priority

PRF.1.4 High-Resolution Timers Performance P1

CGL specifies that carrier grade Linux shall provide high-resolution timer support. As

specified by POSIX 1003.1b section 14, Clocks and Timers API.

PRF.1.7 HANDLING INTERRUPTS AS THREADS

ID Name Category Priority

PRF.1.7 Handling Interrupts As Threads Performance P2

CGL specifies that carrier grade Linux shall enable handling of interrupt handlers (top

half and bottom half) as a task-based process rather than in interrupt processing routine

mechanism to allow:

 A mutex-based critical section inside an interrupt handler.

 The ability for an interrupt handler to sleep.

 Prioritization of an interrupt handler based on real-time scheduling priorities.

 Affinity and load-balancing in an SMP. Context switching overhead should be

considered case by case in the application design. The interrupts are divided into

a critical urgent part that kernel needs to execute quickly, and deferrable part.

The thread based interrupt handler should be applied at deferrable part.

PRF.2.1 ENABLING PROCESS AFFINITY

ID Name Category Priority

PRF.2.1 Enabling Process Affinity Performance P1

CGL specifies that carrier grade Linux shall enable process affinity. Process affinity

enables a process to run on an explicitly designated processor. When process affinity is

used, it provides more efficient caching. For example, it must be possible to bind real-

time processes to specified processors.

PRF.2.2 ENABLING INTERRUPT CPU AFFINITY

ID Name Category Priority

PRF.2.2 Enabling Interrupt CPU Affinity Performance P1

CGL specifies that carrier grade Linux shall enable interrupt CPU affinity. The interrupts

are divided into a critical urgent part that the kernel needs to execute quickly and a

deferrable part. CGL should enable interrupt CPU affinity on the critical urgent part. Note:

The latest stable kernel enables interrupt affinity based on the /proc configuration

interface.

PRF.2.3 (HYPER-THREADING) OPTIMIZED SMT SUPPORT

ID Name Category Priority

PRF.2.3 (Hyper-Threading) Optimized SMT Support Performance P1

CGL specifies that carrier grade Linux shall enable optimized symmetric multi-threading

(SMT) processors and interrupt migration between logical processors. Note: The latest

stable kernel enables this feature.

PRF.4.2 SUPPORT OF GIGABIT ETHERNET JUMBO MTU

ID Name Category Priority

PRF.4.2 Support of Gigabit Ethernet Jumbo MTU Performance P1

CGL specifies that carrier grade Linux shall enable support for a 9000 byte Maximum

Transmission Unit (MTU) for the Gigabit Ethernet protocol to enable lower CPU

overhead and better throughput. This shall be a configurable option as some applications

may prefer low latency to large message sizes. Hardware support is required.

PRF.5.0 EFFICIENT LOW-LEVEL ASYNCHRONOUS EVENTS

ID Name Category Priority

PRF.5.0 Efficient Low-Level Asynchronous Events Performance P1

CGL specifies that carrier grade Linux shall provide an API for applications that allows

asynchronous notifications to be delivered based either level or edge triggers.

PRF.6.0 MANAGING TRANSIENT DATA

ID Name Category Priority

PRF.6.0 Managing Transient Data Performance P1

CGL specifies that carrier grade Linux shall provide support for a self resizing, file

system stored in virtual memory for transient data that can be limited to a maximum size.

PRF.7.0 INTERRUPTLESS ETHERNET DELIVERY

ID Name Category Priority

PRF.7.0 Interruptless Ethernet Delivery Performance P1

CGL specifies that carrier grade Linux shall provide for the capability for Ethernet drivers

to operate in a pure polling mode in which they do not generate interrupts for arriving

frames. This is to prevent interrupt-storms from consuming too many CPU cycles. This is

primarily an issue for gigabit Ethernet.

PRF.8.0 NETWORK STORAGE BLOCK LEVEL REPLICATION PERFORMANCES

ID Name Category Priority

PRF.8.0 Network Storage block level Replication

Performances

Performance P2

CGL specifies that carrier grade Linux shall provide a network storage replication service

with the following performance levels:

 Less than 30% decrease in user throughput compared to local storage access

using a network interface and with full available network bandwidth.

 Less than 25% decrease in user throughput during resynchronization of

redundant devices compared with normal throughput when devices are

synchronized.

PRF.14.0 RAID 0 SUPPORT

ID Name Category Priority

PRF.14.0 RAID 0 Support Performance P1

CGL specifies that carrier grade Linux shall provide RAID 0 (striping) support that stripes

data across multiple disks without any redundant information to enhance performance in

either a request-rate-intensive or transfer-rate-intensive environment.

PERFORMANCE REFERENCES

 Linux Scheduler latency, Clark Williams, Red Hat, Inc. March 2002

http://www.linuxdevices.com/files/article027/rh-rtpaper.pdf

 The Linux scalability Project

http://www.citi.umich.edu/techreports/reports/citi-tr-99-4.pdf

 Scalable statistic counter project

http://lse.sourceforge.net/counters/statctr.html

http://www.linuxdevices.com/files/article027/rh-rtpaper.pdf
http://www.citi.umich.edu/techreports/reports/citi-tr-99-4.pdf
http://lse.sourceforge.net/counters/statctr.html

 Linux 2.5 Timer scalability study from Andy Pfiffer

http://developer.osdl.org/andyp/timers/

 LK SCTP / TCP performance comparison

http://datatag.web.cern.ch/datatag/WP3/sctp/tests.htm

 kernel 2.6 includes some scalability enhancements that are referenced in

http://www.kernelnewbies.org/status/Status-08-Aug-2003.html

 lmbench: Portable Tools for performance analysis:

http://www.usenix.org/publications/library/proceedings/sd96/full_papers/m

cvoy.pdf

 Time-critical tasks in Linux 2.6. Concept to increase the preemptability of

the Linux kernel.

http://inf3-www.informatik.unibw-

muenchen.de/research/linux/hannover/automation_conf04.pdf

 CELF-RT working group

http://tree.celinuxforum.org/pubwiki/moin.cgi/RealTimeWorkingGroup

 Integration New Capabilities into NetPIPE:

http://www.scl.ameslab.gov/netpipe/np_euro.pdf

8. STANDARDS REQUIREMENTS DEFINITION

One goal of the CGL effort to achieve high reliability, availability, and

serviceability (RAS), and application portability is to leverage mature and well-

established industry standards that are common and relevant to the carrier-

grade environment and include them as part of the CGL requirements.

Open standards are important because they are freely available for anyone or

any organization to use and because open standards can evolve with wide

community feedback and validation. The CGL WG is actively working with

recognized standard bodies, such as the Linux Standard Base (LSB – a

workgroup of the Linux Foundation) and the Service Availability Forum (SA

Forum). These organizations are producing standards and specifications that

address the RAS and application portability gaps between Linux as it exists today

and where it needs to be to support highly available communications

applications.

The first requirement in this section shows the CGL working group‟s desire to

work alongside recognized standards bodies:

http://developer.osdl.org/andyp/timers/
http://datatag.web.cern.ch/datatag/WP3/sctp/tests.htm
http://www.kernelnewbies.org/status/Status-08-Aug-2003.html
http://www.usenix.org/publications/library/proceedings/sd96/full_papers/mcvoy.pdf
http://www.usenix.org/publications/library/proceedings/sd96/full_papers/mcvoy.pdf
http://inf3-www.informatik.unibw-muenchen.de/research/linux/hannover/automation_conf04.pdf
http://inf3-www.informatik.unibw-muenchen.de/research/linux/hannover/automation_conf04.pdf
http://tree.celinuxforum.org/pubwiki/moin.cgi/RealTimeWorkingGroup
http://www.scl.ameslab.gov/netpipe/np_euro.pdf

CGL specifies the need for compliance to the Linux

Standard Base (LSB) version 3.0 to ensure a CGL 5.0

distribution will have the support for the same level of

the application binary compatibility as is required by

the LSB standard.

CGL 5.0 requires implementation of the latest interface specifications from the

SA Forum to provide a common set of standards and building blocks for high

availability architectures and platform management. The SA Forum provides

standards specifications that define interfaces for cluster-aware applications

(Application Interface Specification - AIS version B.01.01) and for platform

management applications (Hardware Platform Interface - HPI version B.01.01).

See the SA Forum site (www.saforum.org) for the B.01.01 versions of the AIS

and HPI specifications.

Continuing from previous versions of the CGL specifications, the CGL Standards

Definition adds more POSIX compliance requirements based on IEEE Std

1003.1-2001. These additional areas of POSIX compliance are intended to

bridge the application portability gaps as mainstream communications

applications are ported to Linux application environments.

A variety of other standards requirements are included in the CGL Standards

Definition to address the networking, communications, and platform needs of

carrier environments. Standards requirements such as Stream Control Transfer

Protocol (SCTP), Internet Protocols (Ipv4/IPv6), Mobile Internet Protocol (MIPv6),

Simple Network Management Protocol (SNMP), Intelligent Platform Management

Interface (IPMI), IEEE 801.Q (virtual LAN), Diameter, Common Information

Model (CIM), Web-Based Enterprise Management (WBEM), Advanced

Configuration and Power Interface (ACPI), and PCI Express, are included.

More open industry standards will become mature and recognized over time. The

CGL working group will evaluate them for consideration in future versions of the

CG requirements. The CGL working group believes that the adoption of open

standards in mainline Linux offerings will benefit application developers and

solution providers and will carry Linux to the next level of popularity in the

communications industry as well as the general Linux user community.

STANDARDS REQUIREMENTS

STD.1.0 LINUX STANDARD BASE COMPLIANCE

ID Name Category Priority

STD.1.0 Linux Standard Base Compliance Standards P1

CGL specifies that carrier grade Linux shall be compliant with the Linux Standard Base

(LSB) 3.0 - http://www.linuxbase.org.The LSB 3.0 specification has been split into a

generic LSB core, a generic module for C++, and a set of architecture specific modules.

Required LSB 3.0 modules for CGL are:

 Generic LSB-Core

 Generic LSB-CXX

 For each supported architecture, one LSB-Core module and one LSB-CXX

module

The developer may choose to implement more than one architecture platform. In this

case, each supported architecture platform shall contain an implementation of at least

one architecture specific LSB-Core module and one architecture specific LSB-CXX

module.

STD.3.1 SCTP - BASE FEATURES

ID Name Category Priority

STD.3.1 SCTP: Base Features Standards P1

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

below.

 RFC 2960 - The base standard for SCTP.

 RFC 3309 - An RFC that corrects a weakness in the original SCTP for very small

packets.

http://www.linuxbase.org/
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc3309.txt

STD.3.2.1 SCTP: ADDITIONAL FEATURES

ID Name Category Priority

STD.3.2.1 SCTP: Additional Features Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

below:

 RFC 4460 - Stream Control Transmission Protocol (SCTP) Specification

STD.3.2.2 EXTENSIONS TO BSD SOCKETS TO SUPPORT SCTP

ID Name Category Priority

STD.3.2.2 Extensions to BSD Sockets to support

SCTP

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the Internet

draft below:

 draft-ietf-tsvwg-sctpsocket-13.txt

Carrier Grade Linux Standards Requirements Definition Version 4.0

STD.3.2.3 RFC 3873 MIB FOR SCTP

ID Name Category Priority

STD.3.2.3 RFC 3873 MIB for SCTP Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the Internet

draft below.

 RFC 3873, MIB for SCTP

http://www.ietf.org/rfc/rfc4460.txt
http://www.ietf.org/rfc/rfc3873.txt

STD.3.2.4 EXTENSION FOR ADDING IP ADDRESSES TO SCTP ASSOCIATION

ID Name Category Priority

STD.3.2.4 Extension for adding IP addresses to

SCTP association

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the Internet

draft below:

 draft-ietf-tsvwg-addip-sctp-15.txt: An extension to SCTP that allows adding and

removing IP addresses to an existing SCTP association. This extension is

needed to allow for associations that last longer than expiring IPv6 addresses.

STD.3.2.5 RFC 3758 PARTIAL RELIABILITY

ID Name Category Priority

STD.3.2.5 RFC 3758 Partial reliability Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFC

below:

 RFC 3758 - An extension to SCTP allowing for partial reliability. Introduces a

mechanism for canceling messages no longer worth sending.

STD.3.2.6 SCTP THREATS

ID Name Category Priority

STD.3.2.6 SCTP Threats Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the Internet

draft below:

 draft-ietf-tsvwg-sctpthreat-02.txt: Documents additional security issues that

implementers need to address.

http://www.ietf.org/rfc/rfc3758.txt

STD.4.1 IPV6 BASE FEATURES

ID Name Category Priority

STD.4.1 IPv6 Base Features Standards P1

CGL specifies that carrier grade Linux shall provide the IPv6 functionality listed in the

RFCs below:

 RFC 2460: IPv6 Specification

 RFC 2463: ICMPv6 for IPv6 Specification

 RFC 2461: Neighbor Discovery for IP Version 6 (IPv6)

 RFC 2462: IPv6 Stateless Address Autoconfiguration

 RFC 1981: Path MTU Discovery for IP version 6

 RFC 3493: Basic Socket Interface Extensions for IPv6

 RFC 3542: Advanced Sockets Application Program Interface (API) for IPv6

 RFC 3587: Global Unicast IPv6 Address Format

 RFC 2710: Multicast Listener Discovery for IPv6

 RFC 3810: Multicast Listener Discovery Version 2

STD.4.2.1 IPV6 ADDITIONAL FEATURES: RFC 2451 CIPHERS

ID Name Category Priority

STD.4.2.1 IPv6 Additional Features: RFC 2451

Ciphers

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 2451: The ESP CBC-Mode Cipher Algorithms

http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2463.txt
http://www.ietf.org/rfc/rfc2461.txt
http://www.ietf.org/rfc/rfc2462.txt
http://www.ietf.org/rfc/rfc1981.txt
http://www.ietf.org/rfc/rfc3493.txt
http://www.ietf.org/rfc/rfc3542.txt
http://www.ietf.org/rfc/rfc3587.txt
http://www.ietf.org/rfc/rfc2710.txt
http://www.ietf.org/rfc/rfc3810.txt
http://www.ietf.org/rfc/rfc2451.txt

STD.4.2.2 IPV6 ADDITIONAL FEATURES: RFC 4213/2893 TUNNELS

ID Name Category Priority

STD.4.2.2 IPv6 Additional Features: RFC 4213/2893

Tunnels

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 4213 which replaces

 RFC 2893: Transition Mechanisms for IPv6 Hosts and Routers (IPv6 over IPv4

Tunnel)

STD.4.2.3 IPV6 ADDITIONAL FEATURES: RFC 3484 DEFAULT ADDRESS

SELECTION

ID Name Category Priority

STD.4.2.3 IPv6 Additional Features: RFC 3484

Default Address Selection

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 3484: Default Address Selection for Internet Protocol version 6 (IPv6).

http://www.ietf.org/rfc/rfc4213.txt
http://www.ietf.org/rfc/rfc2893.txt
http://www.ietf.org/rfc/rfc3484.txt

STD.4.2.4 IPV6 ADDITIONAL FEATURES: RFC 3315 DYNAMIC HOST

CONFIGURATION

ID Name Category Priority

STD.4.2.4 IPv6 Additional Features: RFC 3315

Dynamic Host Configuration

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 3315: Dynamic Host Configuration Protocol for IPv6 (DHCPv6).

STD.4.2.5 IPV6 ADDITIONAL FEATURES: RFC 3633 PREFIX OPTIONS FOR

DYNAMIC HOST CONFIGURATION PROTOCOL

ID Name Category Priority

STD.4.2.5 IPv6 Additional Features: RFC 3633 Prefix

Options for Dynamic Host Configuration

Protocol

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 3633: IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP)

version 6

http://www.ietf.org/rfc/rfc3315.txt
http://www.ietf.org/rfc/rfc3633.txt

STD.4.2.6 IPV6 ADDITIONAL FEATURES: RFC 4191 DEFAULT ROUTER

PREFERENCES

ID Name Category Priority

STD.4.2.6 IPv6 Additional Features: RFC 4191

Default Router Preferences

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 4191: Default Router Preferences, More-Specific Routes, and Load Sharing

STD.4.2.7 IPV6 ADDITIONAL FEATURES: RFC 2428 FTP EXTENSIONS

ID Name Category Priority

STD.4.2.7 IPv6 Additional Features: RFC 2428 FTP

Extensions

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 2428: FTP Extensions for IPv6 and NATs

STD.4.2.8 IPV6 ADDITIONAL FEATURES: RFC 3596 DNS EXTENSIONS

ID Name Category Priority

STD.4.2.8 IPv6 Additional Features: RFC 3596 DNS

Extensions

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 1886: DNS Extensions to support IP version 6

 RFC 3596: DNS Extensions to support IP version 6

http://www.ietf.org/rfc/rfc4191.txt
http://www.ietf.org/rfc/rfc2428.txt
http://www.ietf.org/rfc/rfc1886.txt
http://www.ietf.org/rfc/rfc3596.txt

STD.4.2.9 IPV6 ADDITIONAL FEATURES: RFC 2874 DNS ADDRESS

AGGREGATION AND RENUMBERING

ID Name Category Priority

STD.4.2.9 IPv6 Additional Features: RFC 2874 DNS

Address Aggregation and Renumbering

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 2874: DNS Extensions to Support IPv6 Address Aggregation and

Renumbering

STD.4.2.10 IPV6 ADDITIONAL FEATURES: RFC 3646 DNS OPTIONS FOR DHCP

ID Name Category Priority

STD.4.2.10 IPv6 Additional Features: RFC 3646 DNS

options for DHCP

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 3646: DNS options for Dynamic Host Configuration Protocol for IPv6

(DHCPv6)

STD.4.2.13 IPV6 ADDITIONAL FEATURES: NFS

ID Name Category Priority

STD.4.2.13 IPv6 Additional Features: NFS Standards P2

CGL specifies that carrier grade Linux shall provide support for IPv6-based NFS.

http://www.ietf.org/rfc/rfc2874.txt
http://www.ietf.org/rfc/rfc3646.txt

STD.5.1 IPSEC MAJOR CGL FEATURES

ID Name Category Priority

STD.5.1 IPSec Major CGL Features Standards P1

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

below.

 RFC 2367: PF_KEY Key Management API, Version 2

 RFC 2401: Security Architecture for the Internet Protocol

 RFC 2402: IP Authentication Header

 RFC 2406: IP Encapsulating Security Payload (ESP)

 RFC 2403: The Use of HMAC-MD5-96 within ESP and AH

 RFC 2404: The Use of HMAC-SHA -1-96 within ESP and AH

 RFC 2405: The ESP DES-CBC Cipher Algorithm With Explicit IV

 RFC 2409: Support for IKE daemon

 RFC 2410: The NULL Encryption Algorithm and Its Use With Ipsec

 RFC 2451: The ESP CBC-Mode Cipher Algorithms

STD.5.2.1 IPSEC MINOR CGL FEATURES: RFC 4301 SECURITY ARCHITECTURE

FOR IP

ID Name Category Priority

STD.5.2.1 IPSec Minor CGL Features: RFC 4301

Security Architecture for IP

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 4301: Security Architecture for the Internet Protocol

http://www.ietf.org/rfc/rfc2367.txt
http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc2402.txt
http://www.ietf.org/rfc/rfc2406.txt
http://www.ietf.org/rfc/rfc2403.txt
http://www.ietf.org/rfc/rfc2404.txt
http://www.ietf.org/rfc/rfc2405.txt
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc2410.txt
http://www.ietf.org/rfc/rfc2451.txt
http://www.ietf.org/rfc/rfc4301.txt

STD.5.2.2 IPSEC MINOR CGL FEATURES: RFC 4302 IP AUTHENTICATION

HEADER

ID Name Category Priority

STD.5.2.2 IPSec Minor CGL Features: RFC 4302 IP

Authentication Header

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 4302: IP Authentication Header

STD.5.2.3 IPSEC MINOR CGL FEATURES: RFC 4303 IP ENCAPSULATING

SECURITY PAYLOAD

ID Name Category Priority

STD.5.2.3 IPSec Minor CGL Features: RFC 4303 IP

Encapsulating Security Payload

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 4303: IP Encapsulating Security Payload (ESP)

http://www.ietf.org/rfc/rfc4302.txt
http://www.ietf.org/rfc/rfc4303.txt

STD.5.2.4 IPSEC MINOR CGL FEATURES: RFC 4305 CRYPTOGRAPHIC

ALGORITHM REQUIREMENTS

ID Name Category Priority

STD.5.2.4 IPSec Minor CGL Features: RFC 4305

Cryptographic Algorithm Requirements

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 4305: Cryptographic Algorithm Implementation Requirements for

Encapsulating Security Payload (ESP) and Authentication Header (AH)

STD.5.2.5 IPSEC MINOR CGL FEATURES: RFC 4307 CRYPTOGRAPHIC

ALGORITHMS FOR USE IN IKE

ID Name Category Priority

STD.5.2.5 IPSec Minor CGL Features: RFC 4307

Cryptographic Algorithms for Use in IKE

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 4307: Cryptographic Algorithms for Use in the Internet Key Exchange

Version 2

http://www.ietf.org/rfc/rfc4305.txt
http://www.ietf.org/rfc/rfc4307.txt

STD.5.2.6 IPSEC MINOR CGL FEATURES: RFC 4322 OPPORTUNISTIC

ENCRYPTION USING IKE

ID Name Category Priority

STD.5.2.6 IPSec Minor CGL Features: RFC 4322

Opportunistic Encryption using IKE

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 4322: Opportunistic Encryption using the Internet Key Exchange (IKE) --

This document is not part of the basic set of standards required to support IPSec,

but is useful if a customer wants to set up IPSec tunnels without coordinating with

the administrators at the other end of the tunnels.

STD.5.2.7 IPSEC MINOR CGL FEATURES: RFC 4434 AES ALGORITHM FOR IKE

ID Name Category Priority

STD.5.2.7 IPSec Minor CGL Features: RFC 4434

AES Algorithm for IKE

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

and internet drafts below:

 RFC 4434: The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange

Protocol (IKE)

http://www.ietf.org/rfc/rfc4322.txt
http://www.ietf.org/rfc/rfc4434.txt

STD.6.1 MIPV6 CGL MAJOR FEATURES

ID Name Category Priority

STD.6.1 MIPv6 CGL Major Features Standards P1

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFC

below.

 RFC 3775: Mobility Support in IPv6

STD.6.2 MIPV6 MINOR CGL FEATURES

ID Name Category Priority

STD.6.2 IPv6 Minor CGL Features Standards P2

CGL specifies that carrier grade Linux shall provide the functionality listed in the RFCs

below.

 RFC 3776: Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes

and Home Agents.

STD.7.1 SNMP V1, V2, V3

ID Name Category Priority

STD.7.1 SNMP v1, v2, v3 Standards P1

CGL specifies that carrier grade Linux shall provide SNMPv1, SNMPv2, and SNMPv3

functionality as defined in the RFCs listed below.

 SNMPv1 - RFC 1155 through 1157

 Community-based SNMPv2 - RFCs 1901 through 1908

 SNMPv3 - RFC 2571 through 2575

http://www.ietf.org/rfc/rfc3775.txt
http://www.ietf.org/rfc/rfc3776.txt
http://www.ietf.org/rfc/rfc1155.txt
http://www.ietf.org/rfc/rfc1155.txt
http://www.ietf.org/rfc/rfc1901.txt
http://www.ietf.org/rfc/rfc1908.txt
http://www.ietf.org/rfc/rfc2571.txt
http://www.ietf.org/rfc/rfc2575.txt

STD.7.2 SNMP MIBS FOR IPV6/IPV4

ID Name Category Priority

STD.7.2 SNMP MIBs for IPv6/IPv4 Standards P2

CGL specifies that carrier grade Linux shall provide the functionality for the SNMP

IPv6/IPv4 MIBs as defined by the RFCs listed below:

 RFC 3411 SNMP-FRAMEWORK-MIB.txt

 RFC 3412 SNMP-MPD-MIB.txt

 RFC 3413 SNMP-TARGET-MIB.txt, SNMP-NOTIFICATION-MIB.txt, SNMP-

PROXY-MIB.txt

 RFC 3414 SNMP-USER-BASED-SM- MIB.txt

 RFC 3415 SNMP-VIEW-BASED-ACM- MIB.txt

 RFC 2576 SNMP-COMMUNITY -MIB.txt

 RFC 2578 SNMPv2-SMI.txt

 RFC 2579 SNMPv2-TC.txt

 RFC 2580 SNMPv2-CONF.txt

 RFC 3417 SNMPv2-TM.txt

 RFC 3418 SNMPv2-MIB.txt

 RFC 2742 AGENTX-MIB.txt

 RFC 1227 SMUX-MIB.txt

 RFC 3231 DISMAN-SCHEDULE-MIB.txt

 RFC 3165 DISMAN-SCRIPT-MIB.txt

 RFC 2863 IF-MIB.txt

 RFC 2864 IF-INVERTED-STACK-MIB.txt

 RFC 2856 HCNUM-TC.txt

http://www.ietf.org/rfc/rfc3411.txt
http://www.ietf.org/rfc/rfc3412.txt
http://www.ietf.org/rfc/rfc3413.txt
http://www.ietf.org/rfc/rfc3414.txt
http://www.ietf.org/rfc/rfc3415.txt
http://www.ietf.org/rfc/rfc2576.txt
http://www.ietf.org/rfc/rfc2578.txt
http://www.ietf.org/rfc/rfc2579.txt
http://www.ietf.org/rfc/rfc2580.txt
http://www.ietf.org/rfc/rfc3417.txt
http://www.ietf.org/rfc/rfc3418.txt
http://www.ietf.org/rfc/rfc2742.txt
http://www.ietf.org/rfc/rfc1227.txt
http://www.ietf.org/rfc/rfc3231.txt
http://www.ietf.org/rfc/rfc3165.txt
http://www.ietf.org/rfc/rfc2863.txt
http://www.ietf.org/rfc/rfc2864.txt
http://www.ietf.org/rfc/rfc2856.txt

ID Name Category Priority

 RFC 3291 INET-ADDRESS-MIB.txt

 RFC 2665 EtherLike-MIB.txt

 RFC 2011 IP-MIB.txt

 RFC 2096 IP-FORWARD-MIB.txt

 RFC 2012 TCP-MIB.txt

 RFC 2013 UDP -MIB.txt

 RFC 2465 IPV6-TC.txt IPV6-MIB.txt

 RFC 2466 IPV6-ICMP-MIB.txt

 RFC 2452 IPV6-TCP-MIB.txt

 RFC 2454 IPV6-UDP-MIB.txt

 RFC 2790 HOST-RESOURCES-MIB.txt, HOST-RESOURCES-TYPES.txt

 RFC 2819 RMON-MIB.txt

 RFC 2788 NETWORK -SERVICES- MIB.txt

 RFC 2789 MTA -MIB.txt

 RFC 1155 -SMI.txt

 RFC 1213 -MIB.txt

Note: There is currently an ongoing effort within IETF to combine IPv4 and IPv6 MIBs

into unified MIBs. The developer may choose to implement RFC 2011, RFC 2466.

http://www.ietf.org/rfc/rfc3291.txt
http://www.ietf.org/rfc/rfc2665.txt
http://www.ietf.org/rfc/rfc2011.txt
http://www.ietf.org/rfc/rfc2096.txt
http://www.ietf.org/rfc/rfc2012.txt
http://www.ietf.org/rfc/rfc2013.txt
http://www.ietf.org/rfc/rfc2465.txt
http://www.ietf.org/rfc/rfc2466.txt
http://www.ietf.org/rfc/rfc2452.txt
http://www.ietf.org/rfc/rfc2454.txt
http://www.ietf.org/rfc/rfc2790.txt
http://www.ietf.org/rfc/rfc2819.txt
http://www.ietf.org/rfc/rfc2788.txt
http://www.ietf.org/rfc/rfc2789.txt
http://www.ietf.org/rfc/rfc1155.txt
http://www.ietf.org/rfc/rfc1213.txt
http://www.ietf.org/rfc/rfc2011.txt
http://www.ietf.org/rfc/rfc2466.txt

STD.8.1 SA FORUM AIS

ID Name Category Priority

STD.8.1 SA Forum AIS http://www.saforum.org Standards P2

CGL specifies that carrier grade Linux shall provide the APIs as defined by the SA

Forum AIS Release 5 or a subsequent level of the relevant AIS specification

STD.8.8 SA FORUM HPI

ID Name Category Priority

STD.8.8 SA Forum HPI http://www.saforum.org Standards P1

CGL specifies that carrier grade Linux shall provide the functionality defined in the SA

Forum HPI B.02.01 specification or a subsequent level of the relevant HPI specification.

STD.9.0 IPMI

ID Name Category Priority

STD.9.0 IPMI Standards P1

CGL specifies that carrier grade Linux shall provide the System Management Software

(SMS) functionality to interface with the below-listed levels of the Intelligent Platform

Management Interface (IPMI):

 IPMI v1.5 specification

 IPMI v2.0 specification

http://www.saforum.org/
http://www.saforum.org/

STD.10.0 802.1Q VLAN ENDPOINT

ID Name Category Priority

STD.10.0 802.1Q VLAN Endpoint Standards P1

CGL specifies that carrier grade Linux shall provide the functionality defined in the IEEE

Std 802.1Q-1998 specification. This standard defines the operation of virtual LAN

(VLAN) endpoints that permit the definition, operation and administration of Virtual LAN

topologies within a LAN infrastructure.

http://www.ieee802.org/1/pages/802.1Q.html

STD.11.1 DIAMETER PROTOCOL CGL MAJOR FEATURES

ID Name Category Priority

STD.11.1 Diameter Protocol CGL Major Features Standards P2

CGL specifies that carrier grade Linux shall provide the functionality defined in the

following RFCs and Internet drafts.

 RFC 3588 (Diameter Base Protocol)

 draft-ietf-eap-rfc2284bis-07.txt

 draft-ietf-aaa-eap-03.txt

STD.11.2 DIAMETER PROTOCOL MINOR CGL FEATURES

ID Name Category Priority

STD.11.2 Diameter Protocol Minor CGL Features Standards P2

CGL specifies that carrier grade Linux shall provide the functionality defined

in the following Internet drafts.

 RFC 4004 Diameter Mobile IPv4 Application

http://www.ieee802.org/1/pages/802.1Q.html
http://www.ietf.org/rfc/rfc3588.txt
http://www.faqs.org/rfcs/rfc4004.html
http://www.faqs.org/rfcs/rfc4004.html
http://www.faqs.org/rfcs/rfc4004.html

STD.17.1 ISCSI SUPPORT: RFC 3270 ISCSI

ID Name Category Priority

STD.17.1 iSCSI Support: RFC 3270 iSCSI Standards P1

CGL specifies that carrier grade Linux shall provide support for Internet Small Computer

Systems Interface (iSCSI) Initiators. The iSCSI Initiators shall support IPv6, SNMP MIBs,

error handling, target discovery, and multiple sessions. This functionality is defined in the

following RFCs:

 RFC 3720 - Internet Small Computer Systems Interface (iSCSI)reqs, determine

which are P1

STD.17.2 ISCSI SUPPORT: RFC 3271 ISCSI NAMING & DISCOVERY

ID Name Category Priority

STD.17.2 iSCSI Support: RFC 3271 iSCSI Naming &

Discovery

Standards P1

CGL specifies that carrier grade Linux shall provide support for Internet Small Computer

Systems Interface (iSCSI) Initiators. The iSCSI Initiators shall support IPv6, SNMP MIBs,

error handling, target discovery, and multiple sessions. This functionality is defined in the

following RFCs:

 RFC 3721 - Internet Small Computer Systems Interface (iSCSI) Naming and

Discovery

http://www.ietf.org/rfc/rfc3720.txt
http://www.ietf.org/rfc/rfc3721.txt

STD.17.3 ISCSI SUPPORT: RFC 3273 ISCSI SECURING BLOCK STORAGE

PROTOCOLS OVER IP

ID Name Category Priority

STD.17.3 iSCSI Support: RFC 3273 iSCSI Securing

Block Storage Protocols over IP

Standards P1

CGL specifies that carrier grade Linux shall provide support for Internet Small Computer

Systems Interface (iSCSI) Initiators. The iSCSI Initiators shall support IPv6, SNMP MIBs,

error handling, target discovery, and multiple sessions. This functionality is defined in the

following RFCs:

 RFC 3723 - Securing Block Storage Protocols over IP

STD.18.1 DIFFERENTIATED SERVICES: RFC 2474 DEFINITION

ID Name Category Priority

STD.18.1 Differentiated Services: RFC 2474

Definition

Standards P2

CGL specifies that carrier grade Linux shall provide support for differentiated services for

IPv4 protocol as defined by the RFCs below. Differentiated services provide network

traffic with different levels of service to enable quality of service and traffic control.

 RFC 2474 - Definition of the Differentiated Services Field (DS Field) in the IPv4

and IPv6 Headers

http://www.ietf.org/rfc/rfc3723.txt
http://www.ietf.org/rfc/rfc2474.txt

STD.18.2 DIFFERENTIATED SERVICES: RFC 2475 DEFINITION

ID Name Category Priority

STD.18.2 Differentiated Services: RFC 2475

Definition

Standards P2

CGL specifies that carrier grade Linux shall provide support for differentiated services for

IPv4 protocol as defined by the RFCs below. Differentiated services provide network

traffic with different levels of service to enable quality of service and traffic control.

 RFC 2475 - An Architecture for Differentiated Services

STD.20.1 PKI CA: RFC 2527 X.509 PKI

ID Name Category Priority

STD.20.1 PKI CA: RFC 2527 X.509 PKI Standards P2

CGL specifies that carrier grade Linux shall provide the functionality for private key

infrastructure (PKI) support as defined in the standards:

 RFC 2527 – Internet X.509 Public Key Infrastructure

STD.20.2 PKI CA: RFC 2527 X.509 PKI PROTOCOLS FTP AND HTTP

ID Name Category Priority

STD.20.2 PKI CA: RFC 2527 X.509 PKI Standards P2

CGL specifies that carrier grade Linux shall provide the functionality for private key

infrastructure (PKI) support as defined in the standards:

 RFC 2585 – Internet X.509 Public Key Infrastructure

Operational Protocols: FTP and HTTP

http://www.ietf.org/rfc/rfc2475.txt
http://www.ietf.org/rfc/rfc2527.txt
http://www.ietf.org/rfc/rfc2585.txt

STD.20.3 PKI CA: RFC 3279 ALGORITHMS FOR X.509 PKI

ID Name Category Priority

STD.20.3 PKI CA: RFC 3279 Algorithms for X.509

PKI

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality for private key

infrastructure (PKI) support as defined in the standards:

RFC 3279 - Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure

STD.20.4 PKI CA: RFC 3280 X.509 PKI CERTIFICATE STUFF

ID Name Category Priority

STD.20.4 PKI CA: RFC 3280 X.509 PKI Certificate

Stuff

Standards P2

CGL specifies that carrier grade Linux shall provide the functionality for private key

infrastructure (PKI) support as defined in the standards:

RFC 3280 - Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile

STD.26.1 LAYER 2 TUNNELING PROTOCOL SUPPORT

ID Name Category Priority

STD.26.1 Layer 2 Tunneling Protocol Support Standards P1

CGL specifies that carrier grade Linux shall provide support for Layer 2 Tunneling

Protocol (L2TP) as described in RFC 2661: Layer Two Tunneling Protocol "L2TP".

http://www.faqs.org/rfcs/rfc3279.html
http://www.faqs.org/rfcs/rfc3280.html
http://www.faqs.org/rfcs/rfc2661.html

STD.26.2 LAYER 2 TUNNELING PROTOCOL SUPPORT VERSION 3

ID Name Category Priority

STD.26.2 Layer 2 Tunneling Protocol Support Version

3

Standards P1

CGL specifies that carrier grade Linux shall provide support for Layer 2 Tunneling

Protocol (L2TP) as described in RFC 3931: Layer Two Tunneling Protocol - Version 3

(L2TPv3).

9. HARDWARE REQUIREMENTS DEFINITION

To stay competitive and profitable in the telecommunication industry, standards-

based, modular, commercial-off- the-shelf (COTS) hardware components are

being used along with open software, including operating systems, middleware,

and applications. A goal of the CGL working group is to promote the migration of

the telecommunication industry from the proprietary hardware platforms to COTS

hardware by insuring that the Linux environment provides adequate support for

these COTS platforms. The CGL Hardware Requirements Definition – Version

4.0 identifies a set of widely-used industry hardware platforms and defines the

support that is needed in the operating system for these platforms. The scope of

these hardware requirements applies to the Linux kernel, kernel interfaces (APIs

and libraries), system software, and tools.

This section specifies a set of generic requirements that are common across

platform types. It includes support for blade servers, for hardware management

interfaces, and for blade hot swap events. To address the need to manage highly

available carrier grade systems through hardware out-of-band mechanisms,

management capabilities such as those found in the Intelligent Platform

Management Interface (IPMI) are also described.

Carrier-grade systems require high performance and high throughput

interconnections within a system and between system nodes. Hardware-related

requirements, such as PCI Express support, and PCI Express Device Hot Plug,

are included. Other hardware related requirements such as a CPU throttle

mechanism, iSCSI Initiator Support”, and “iSCSI Target Discovery” are also

specified.

http://www.faqs.org/rfcs/rfc3931.html

Considering the diversity of hardware platforms used in a carrier grade

environment, the CGL Hardware Requirements Definition - Version 4.0 does not

define requirements for just one type of industry platform. Instead it defines

generic platform requirements and then provides an “Industry Platforms” section

to provide implementation guidelines for specific architectures. Examples of such

industry platforms include AdvancedTCA, BladeCenter, CompactPCI and rack

mount types of servers.

HARDWARE SUB-CATEGORIES

Requirement Sub-

Category

Sub-Category Description

PLT General Platform

PIC Platform Interconnect

PMT Platform Management

PMS Platform Miscellaneous

HARDWARE REQUIREMENTS

PMS.1.0 CPU THROTTLE

ID Name Category Priority

PMS.1.0 CPU Throttle Hardware P2

CGL specifies that carrier grade Linux shall provide a CPU power consumption

management capability that enables adjustment of the CPU frequency. Any power,

voltage and frequency settings shall be within the allowed range for the hardware.

PMS.5.1 ISCSI INITIATOR SUPPORT

ID Name Category Priority

PMS.5.1 iSCSI Initiator Support Security P1

CGL specifies that carrier grade Linux shall support the iSCSI protocol to enable block

level access to SCSI storage devices using the TCP/IP transport. The support shall be

compliant with the RFC 3270 specification and should provide iSCSI initiator support. At

a minimum the supported iSCSI initiators should be able to authenticate themselves to

potential iSCSI targets using the two-way CHAP authentication algorithm. See STD.17.0

iSCSI.

PMS.5.3 ISCSI TARGET DISCOVERY

ID Name Category Priority

PMS.5.3 iSCSI Target Discovery Security P1

CGL specifies that the iSCSI Initiators implemented by carrier grade Linux shall support

the SendTargets Discovery mechanism to discover potential iSCSI targets they can

connect. See STD.17.0 iSCSI.

HARDWARE REFERENCES

This section provides background information for some of the hardware referred to in

this specification.

 Intelligent Platform Management Interface (IPMI) Specifications:

http://developer.intel.com/design/servers/ipmi

 PCI Express at the PCI-SIG web site: http://www.pcisig.com/

 Intel® Developer Network for PCI Express Architecture: http://www.express-lane.org

 Advanced Switching (ASI-SIG web site): http://www.asi-sig.com/

 Rapid I/O: http://www.rapidio.org

http://www.ietf.org/rfc/rfc3270.txt
http://developer.intel.com/design/servers/ipmi
http://www.pcisig.com/
http://www.express-lane.org/
http://www.asi-sig.com/
http://www.rapidio.org/

 Advanced Configuration and Power Interface (ACPI): http://www.acpi.info/

10. SECURITY REQUIREMENTS DEFINITION

The telecommunications environment is different from a general-purpose

computing environment. The most salient differences to consider in developing a

CGL threat model are:

 CGL systems do not have many user accounts.

 User accounts do not reflect individual users.

 CGL systems are configured through custom user interfaces.

 CGL systems are typically configured without shell access.

 Administrators are trusted and competent.

The major threat to the telecommunications environment is, therefore,

unauthorized access to management and control interfaces by outsiders. These

outsiders can gain access by subverting the operating system or one of the

applications it is running.

A severe potential security threat arises when applications need to touch multiple

security planes. Many telecommunication services can be provisioned remotely

by the end-user.

Many ISPs that offer domain hosting allow customers to create new mailboxes or

route incoming calls to 5-digit work extensions to any telephone number in the

world with just a few clicks on a web page. Facilities like these create a new set

of risks:

 Unauthorized rerouting of email and telephone calls by disgruntled

associates or unscrupulous competitors.

 Exploitation of vulnerabilities in software to “jump” from one security plane

to another, which can lead to many types of risks.

Mitigating these risks will require some forethought such that users of these

systems are properly authenticated and authorized and that information traveling

between planes passes through narrowly defined interfaces that protect against

unauthorized access.

http://www.acpi.info/

SECURITY DESIGN

The security objectives and requirements in this document are aimed at

analyzing and mitigating threats and improving resiliency to attacks on CGL

systems. The requirements in this section attempt to implement security

objectives for CGL systems and are based on an intersection of assumptions

about CGL systems:

 Intended use

 Environment

 Security policies

 Exposure to expected threats and vulnerabilities

The security requirements are firmly rooted in sound security practices. These

practices and terminology borrow heavily from [CSPP-OS03], an example

Common Criteria profile for common off the shelf (COTS) operating systems.

Given the environment described in the previous section, the significant threat to

carrier grade systems is unauthorized access to management and control

interfaces by intruders.

The CGL Security Requirements have been based upon the Common Criteria

Protection Profiles:

 Identify the assumptions about CGL systems based upon their use and

their environment.

 Draft a set of security policies to which CGL systems shall adhere.

 Identify common threats to which CGL systems are exposed.

 Derive the set of functional objectives that CGL systems shall implement.

 Derive a coherent set of requirements that address the functional

objectives.

 DESIGN OBJECTIVES

This section identifies the security objectives met by the requirements in this

specification. A more complete list from which these security objectives were

taken is found in section 10.7. A Target of Evaluation (TOE) is the system and

environment to which these objectives are applied.

The following table specifies the security objectives met by requirements listed in

section of this document.

Security Objective Description

O.DETECT-

SOPHISTICATED

The environment must provide the ability to detect

sophisticated attacks and the results of such attacks (e.g.

corrupted system state).

O.ENTRY-NON-

TECHNICAL

The environment must provide sufficient protection against

non-technical attacks by other than authenticated users.

O.PHYSICAL Those responsible for the system must ensure that those parts

of the system critical to security policy are protected from

physical attack that might compromise security.

O.ACCESS-TOE The system must provide public access and access by

authenticated users to those resources and actions for which

they have been authorized.

O.ACCOUNT-TOE The system must ensure, for actions under its control or

knowledge, that all users can subsequently be held

accountable for their security relevant actions. It is anticipated

that individual accountability might not be achieved for some

actions.

O.AUTHORIZE-TOE The system must provide the ability to specify and manage

user and system process access rights to individual processing

resources and data elements under its control, supporting the

organization‟s security policy for access control.

O.BYPASS-TOE The system must prevent errant or non-malicious, authorized

software or users from bypassing or circumventing security

policy enforcement. NOTE: This objective is limited to „non-

malicious‟ because CSPP-OS controls are not expected to

provide sufficient mitigation for the greater negative impact that

„malicious‟ implies.

O.DETECT-TOE The system must enable the detection of a specified set of

vulnerabilities.

O.ENTRY-TOE The system must prevent logical entry to itself using

unsophisticated technical methods by persons without

authority for such access.

O.KNOWN-TOE The system must ensure that, for all actions under its control

and except for a well-defined set of allowed actions, all users

are identified and authenticated before being granted access.

O.OBSERVE-TOE The system must ensure that its security status is not

misrepresented to the administrator or user. This is a

combination of prevention and detection.

O.RESOURCES The system must protect itself from user or system errors that

result in shared resource exhaustion.

O.APPLICATION-

TOOLS

The system must provide a reasonable, up-to-date set of

security tools and libraries for use by applications.

O.ACCESS-

MALICIOUS

System and environmental controls are required to sufficiently

mitigate the threat of malicious actions by authenticated users.

O.DETECT-

SYSTEM

The system, in conjunction with other entities in the

environment, must enable the detection of system insecurities.

O.NETWORK The system must be able to meet its security objectives in a

distributed environment.

O.ENTRY-

SOPHISTICATED

The system and environment must sufficiently mitigate the

threat of an individual (other than an authenticated user)

gaining unauthorized access via sophisticated, technical

attack.

O.CONTAINMENT The system and environment must provide the ability to

contain the effect of a security failure of an application to that

application.

The following table specifies the security objectives not met by requirements in

section of this document.

Security Objective Rational for not including in specification

O.ACCESS-NON-

TECHNICAL

The environment must provide sufficient protection against

non-technical attacks by authenticated users for non-malicious

purposes.

O.AVAILABLE-TOE The system must protect itself from unsophisticated denial-of-

service attacks.

O.INFO-FLOW The environment must ensure that any information flow control

policies are enforced between system components and at the

system external interfaces.

O.RECOVER-TOE,

O.RECOVER-

SYSTEM

Fail-secure is not something that OSDL CGL can provide.

O.COMPLY There are many regulations that might apply to OSDL CGL. It

is not the responsibility of this specification to enumerate

requirements to conform to this myriad of regulations.

O.DUE-CARE It is the responsibility of the administrative personnel to

properly secure and maintain a system.

O.MANAGE It is the responsibility of administrative personnel to properly

secure and maintain a system. This includes periodic audits of

system configuration (not log analysis). However, no such

software is being required by OSDL CGL.

O.OPERATE Mostly this is the responsibility of administrative personnel.

Secure default configuration settings will not be listed in this

specification.

O.DENIAL-

SOPHISTICATED

OSDL CGL is not directly able to mitigate most denial of

service attacks, as mitigating them would require redesign of

protocols and interfaces.

SECURITY REQUIREMENTS

SEC.1.1 DYNAMIC KERNEL SECURITY MODULE MECHANISM

ID Name Category Priority

SEC.1.1 Dynamic Kernel Security Module

Mechanism

Security P1

CGL specifies that carrier grade Linux shall support an interface that allows the addition

of new access control policy implementations to the kernel without requiring patching or

recompilation. This support must allow for the dynamic loading of such policy

implementations. The mechanism must govern all of the kernel objects. This requirement

does not specify any particular policies.

SEC.1.2 PROCESS CONTAINMENT USING FILE SYSTEM RESTRICTIONS

ID Name Category Priority

SEC.1.2 Process Containment using File System

Restrictions

Security P1

CGL specifies that carrier grade Linux shall provide support for constraining the

privileges and access to system resources of a process independently of the user

account under which the process runs by limiting a process' access to a subset of the file

system hierarchy. This limits the effects of a security compromise of a process (such as

a buffer overflow exploit).

SEC.1.3 PROCESS CONTAINMENT USING MAC-BASED MECHANISM

ID Name Category Priority

SEC.1.3 Process Containment Using MAC-based

Mechanism

Security P1

CGL specifies that carrier grade Linux shall provide support for constraining the

privileges and access to system resources of a process independently of the user

account under which the process runs, using a mandatory access control (MAC)

mechanism. This limits the effects of a security compromise of a process, such as a

buffer overflow exploit, even if it running as root.

SEC.1.3.1 MAC-BASED POLICY ADMINISTRATION TOOLS

ID Name Category Priority

SEC.1.3.1 MAC-based Policy Administration Tools Security P2

CGL specifies that carrier grade Linux shall provide tools for the administration of MAC-

based access control policies. These tools should facilitate the creation, maintenance,

and management of policies. The tools should provide at least one of a command line or

graphical interface.

SEC.1.4 BUFFER OVERFLOW PROTECTION

ID Name Category Priority

SEC.1.4 Buffer Overflow Protection Security P1

CGL specifies that carrier grade Linux shall provide at least one mechanism to protect

against the exploitation of software bugs that exploit the lack of boundary checking in

many programs and give an attacker some access to a task's address space by writing

outside of buffer bounds.

SEC.1.5 ACCESS CONTROL LIST SUPPORT FOR FILE SYSTEMS

ID Name Category Priority

SEC.1.5 Access Control List Support for File

Systems

Security P1

CGL specifies that carrier grade Linux shall provide access control list (ACL) capabilities

on file systems that allow the specification of access rights for multiple users and groups.

SEC.2.1 GENERIC AUTHENTICATION MODULES

ID Name Category Priority

SEC.2.1 Generic Authentication Modules Security P1

CGL specifies that carrier grade Linux shall support a mechanism for implementing new

operating system authentication mechanisms. This support must allow for the dynamic

loading of authentication modules.

SEC.2.2 PASSWORD INTEGRITY CHECKING

ID Name Category Priority

SEC.2.2 Password Integrity Checking Security P1

CGL specifies that carrier grade Linux shall provide tools to check passwords to ensure

they cannot be cracked using common attack methods. These tools shall support at least

the DES cipher text format and allow the user to specify rules for rejecting passwords.

SEC.3.1 AUDITING

ID Name Category Priority

SEC.3.1 Auditing Security P1

CGL specifies that carrier grade Linux shall provide auditing mechanisms that flag

security-relevant events and alert a system administrator.

SEC.3.2 SECURE TRANSPORT OF LOG INFORMATION

ID Name Category Priority

SEC.3.2 Secure Transport of Log Information Security P1

CGL specifies that carrier grade Linux shall provide secure transport of log information

over a network to the log files. The transport mechanism shall ensure that the

information remains confidential, cannot be modified, is not a replay of an earlier log

message, and originated at the source it claims.

SEC.3.3 PERIODIC AUTOMATED LOG ANALYSIS

ID Name Category Priority

SEC.3.3 Periodic Automated Log Analysis Security P1

CGL specifies that carrier grade Linux shall provide a mechanism for periodically and

automatically analyzing log files. This mechanism shall be able to generate reports if any

suspicious or unrecognized log entry is detected.

SEC.3.4 ACTIVE LOG MONITORING

ID Name Category Priority

SEC.3.4 Active Log Monitoring Security P1

CGL specifies that carrier grade Linux shall provide a mechanism for automatically

analyzing security-relevant log information. This mechanism shall be able to generate

alarms if criteria set by a system administrator are met.

SEC.3.5 LOG INTEGRITY AND ORIGIN AUTHENTICATION

ID Name Category Priority

SEC.3.5 Log Integrity and Origin Authentication Security P1

CGL specifies that carrier grade Linux shall provide a mechanism to check that log files

have not been modified (integrity), even by most insiders. In addition, CGL specifies that

carrier grade Linux shall provide a mechanism to verify the origin of a log message. CGL

specifies that carrier grade Linux shall provide a mechanism to prevent replay attacks of

a log message.

SEC.4.1 IPSEC

ID Name Category Priority

SEC.4.1 IPsec Security P1

CGL specifies that carrier grade Linux shall provide IPsec support for network level

confidentiality and integrity. The implementation shall conform to RFC 2401, 2402, 2406

and at least one encapsulating security payload (ESP) algorithm such as specified by

RFC 2451.

SEC.4.2 IKE

ID Name Category Priority

SEC.4.2 IKE Security P1

CGL specifies that carrier grade Linux shall provide an Internet Key Exchange (IKE)

service to perform standards-based key exchange for IPsec. The service shall conform

to RFC 2409.

SEC.4.3 PF_KEY VERSION 2

ID Name Category Priority

SEC.4.3 PF_KEY Version 2 Security P1

CGL specifies that carrier grade Linux shall provide PF_KEY support, as defined by RFC

2367, for key management for the IPsec module and the IKE service.

http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc2402.txt
http://www.ietf.org/rfc/rfc2406.txt
http://www.ietf.org/rfc/rfc2451.txt
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc2367.txt

SEC.4.4 PKI SUPPORT FOR APPLICATIONS

ID Name Category Priority

SEC.4.4 PKI Support for Applications Security P1

CGL specifies that carrier grade Linux shall provide basic PKI features, which shall

conform to the IETF PKIX standards, specifically RFC 2527, 3279 and 3280. Support for

processing certification revocation lists (CRLs) is required, although a specified delivery

mechanism such as HTTP/FTP RFC 2585) is not specified.

SEC.4.5 SSL/TLS SUPPORT FOR APPLICATIONS

ID Name Category Priority

SEC.4.5 SSL/TLS Support for Applications Security P1

CGL specifies that carrier grade Linux shall provide basic SSL/TLS support, which shall

conform to the legacy SSL and IETF TLS standards.

SEC.4.6 PKI CERTIFICATE AUTHORITY (CA)

ID Name Category Priority

SEC.4.6 PKI Certificate Authority (CA) Security P1

CGL specifies that carrier grade Linux shall provide a basic PKI CA service. This service

shall conform to the IETF PKIX standards, specifically RFC 2527, RFC 3279 and 3280.

Support for the management of certification revocation lists (CRLs) is required.

Certificate management and request protocols as defined by RFC 2527 3279, and 3280,

are not requirements.

http://www.ietf.org/rfc/rfc2527.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc2585.txt
http://www.ietf.org/rfc/rfc2527.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc2527.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3280.txt

SEC.5.1 PERIODIC USER-LEVEL FILE INTEGRITY CHECKING

ID Name Category Priority

SEC.5.1 Periodic User-Level File Integrity Checking Security P1

CGL specifies that carrier grade Linux shall provide a mechanism to enable a periodic

checking of the integrity of files at user-level. Files to be checked are both binary files,

which should not change after installation, and text files, such as configuration and log

files, which may change. File integrity checks shall be able to be scheduled at any time

of the day. The checking mechanism shall be able to send alarms to a system

administrator when inconsistencies are detected.

SEC.7.1 MEMORY LIMITS

ID Name Category Priority

SEC.7.1 Memory Limits Security P1

CGL specifies that carrier grade Linux shall provide support for per-process limits for the

use of system memory.

SEC.7.2 FILE SYSTEM QUOTAS

ID Name Category Priority

SEC.7.2 File System Quotas Security P1

CGL specifies that carrier grade Linux shall provide support for per-user file system

quotas.

SEC.7.3 PROCESS QUOTAS

ID Name Category Priority

SEC.7.3 Process Quotas Security P1

CGL specifies that carrier grade Linux shall provide support for per-user quotas on the

number of processes which may be created.

SEC.8 TRUSTED PLATFORM MODULE (TPM) SUPPORT

ID Name Category Priority

SEC.8 Trusted Platform Module (TPM) Support Security P2

CGL specifies that, if and only if it is installed and executing on a TPMenabled platform,

carrier grade Linux shall provide OS support for the TPM hardware, as defined in TCG

TPM Specification, version 2.

SEC.9.1 ROLE-BASED ACCESS CONTROL

ID Name Category Priority

SEC.9.1 Role-Based Access Control Security P1

CGL specifies that carrier grade Linux shall provide a mechanism to associate a name

with a set of privileges and commands to be executed, defining a role within the system.

It must be possible to assign a list of authorized users to a role, to remove users from a

role and to log and audit actions performed within the role. Each role must have a

symbolic name and be able to be uniquely identified within the system.

SEC.9.2 ADVANCED ROLE-BASED ACCESS CONTROL

ID Name Category Priority

SEC.9.2 Advanced Role-Based Access Control Security P2

CGL specifies that carrier grade Linux shall implement the Common Criteria Role-Based

Access Control protection profile, version 1.0.

SEC.10 TAMPER-RESISTANT STORAGE

ID Name Category Priority

SEC.10 Tamper-Resistant Storage Security P2

CGL specifies that carrier grade Linux shall provide secure, tamper-resistant storage for

security-relevant data such as keys and certificates. It must be possible for both kernel

and user space to request validation of such data and to receive an assessment whether

such data has been modified either via the operating system or some external source.

SEC.11.1 FILE ACCESS TRACING

ID Name Category Priority

SEC.11.1 File Access Tracing Security P1

CGL specifies that carrier grade Linux shall provide the ability to record and report, via

the normal system event reporting mechanism, file access events. At least the following

file access events must be recorded and reported:

 File open

 File close

 File read

 File write

 File deletion

 File attribute changes

The reports must at least include the event that is being recorded and some uniquely

identifiable information about the issuer of the operation.

SEC.11.2 FILE ACCESS TRACING: LIMITING

ID Name Category Priority

SEC.11.2 File Access Tracing: Limiting Security P2

CGL specifies that carrier grade Linux shall provide the ability to record and report file

access events. It must be possible to include or exclude arbitrary files and/or directory

hierarchies from the file access tracing and the types of events that shall be logged.

 SECURITY DESIGN PRINCIPLES

Principle Description

Relevance The requirement must be relevant and implement the

function CGL objectives.

Correctness of

Implementation

The requirement must faithfully implement the security

model upon which it is based.

Simplicity The requirements should be simple to implement.

Complexity is the enemy of security. Common uses

should be easy to handle and defaults should be

sensible.

Robustness The implementations of the requirements should be

difficult to configure incorrectly, fail in secure ways, and

produce useful error messages.

Orthogonality Requirements should be useful individually without

significant overlap in functionality.

Interface Stability Changes and additions to the Linux APIs should be done

with backward compatibility in mind for both source code

and binary code.

Provision of Defense-in-

Depth

Multiple security mechanisms should exist to provide

additional security protection.

Designed for Testing A test suite should be provided for unit testing of the

requirement implementations.

ITU-T RECOMMENDATION X.805 ET. AL.

The International Telecommunications Union (ITU) has published many

standards that are relevant to the security of telecommunications systems. The

specification defers to the ITU standards for telecommunications-specific security

requirements. The CGL Security Requirements Definition is limited to issues

relating to security of the underlying operating system.

THE X.805 SECURITY FRAMEWORK

X.805 defines security in terms of two major concepts which are layers and

planes.

The three layers are:

1. Infrastructure - security of routers, switches, servers, communication

links, etc.

2. Services - security of services offered to the customer, such as leased

lines, e-mail, SMS.

3. Application - security of customer applications using services.

The three planes are:

1. Management - security of OAM&P

2. Control - security of signaling, i.e. Session creation and modification

3. End-user - security of end-user data flows

Layers and planes intersect, forming a 3 by 3 matrix. Orthogonal to this, X.805

defines eight security dimensions:

 Privacy and data confidentiality

 Authentication

 Integrity

 Non-repudiation

 Access Control

 Communication

 Availability

These dimensions touch each of the cells of the layers/planes matrix.

For brevity's sake, we refer to the definitions in [ITU03].

Many of the issues addressed by X.805 are not relevant to our analysis, because

they are outside the scope of an operating system.

RISKS, THREATS, AND VULNERABILITIES

All discussion of security revolves around risk. Risks are created when a security

vulnerability is combined with the threat of that vulnerability being exploited. In

the common buffer overflow attack scenario vulnerability (the lack of input

validation in the software) and a threat (the attacker using software that exploit

the vulnerability), creates the risk of a successful attack. The risk can be

mitigated in different ways. The vulnerability is removed by fixing the software.

The vulnerability is also removed by preventing the attack.

Risks do not necessarily have to be mitigated in software, but that the

environment in which a system is embedded can also mitigate them. This is an

important point because it is nearly impossible to construct systems that are

invulnerable to attack.

ALL SOFTWARE CONTAINS VULNERABILITIES

All software contains vulnerabilities and it is impractical to find and remove all of

them in a system. Some methods for lowering the risks relating to vulnerabilities

are:

 Not exposing the system running the software to insecure networks.

This is practical for certain limited purposes, for instance controlling a

power plant. In the CGL environment one could segregate network traffic

from different security planes, which would eliminate the threat of intruders

attacking software operating in the management and control plane.

 Overflow detection through the use of programming languages and

development tools. One example is the gcc compiler using the stack

protection (previously known as ProPolice) extension. Most stack buffer

overflows will result in the premature termination of a program. This

termination transforms the risk of a successful buffer overflow attack into a

denial of service attack.

 Limiting software privileges. A common approach is the use of 'chroot'

jails, a method of restricting a program's access to a very limited part of

the file system. Another approach is the use of a security manager that

decides whether an application is allowed to perform certain operations. A

common example is the Java sandbox which prevents access of applets

to most system resources.

 Restricting network access using a DMZ. The application and the

system running it may still be compromised, but the problem is somewhat

contained.

The solution of many security problems will be a combination of the correct

application of OS facilities, and a correct design of the environment in which the

systems operate.

APPLICATIONS ACCESSING MULTIPLE PLANES

A particular issue exists where applications need to access multiple security

planes. Many CGL services can be provisioned remotely by the end-user. Many

ISPs that offer domain hosting allow the creation of new mailboxes by the

customer. These facilities create new risks:

 Unauthorized rerouting of e-mail and telephone calls by disgruntled

employees or unscrupulous competitors.

 Exploitation of vulnerabilities in software to 'jump' from one security plane

to another.

Mitigating these risks requires forethought.

 The users of these systems need to be properly authenticated and

authorized.

 Information traveling between planes should pass through narrowly

defined interfaces that protect against unauthorized access to the control

and management planes from the end-user plane. A security failure in an

exposed part of the system should not result in failure of the system as a

whole.

Facilities that limit information flow between planes are not commonly available.

Possible approaches could be:

 Running software on multiple hosts, with very limited connectivity between

them.

 Running multiple processes on the same host, using operating system

facilities to contain each process in its own security domain.

PRIVILEGE MINIMIZATION AND FINE-GRAINED ACCESS CONTROLS

Unix-like systems such as Linux share a few common security facilities:

 Discretionary access control using user IDs, group IDs, and file system

privileges.

 Restriction of processes to a portion of the filesystem.

Some Unix-like systems provide additional facilities which can be useful under

certain circumstances, such as:

 Access Control Lists: Some access control policies are difficult to

implement with the classical Unix access control mechanism. ACLs

provide a more powerful mechanism to describe access rules. The lack of

users on typical carrier grade equipment makes ACLs not overly useful.

 Role Based Access Control: Users of the system can be assigned 'roles'

which grant privileges to resources. The role 'help desk' for example could

include privileges to change passwords for non-administrative users.

RBAC is most useful if there are many instances of the role. This is not

commonly the case for CGL systems.

To mitigate risks precipitated by software design or implementation errors, CGL

requires a much more fine-grained control over system privileges. The common

way to handle programs that need certain privileges is to give them full privileges

at start-up time and let the program drop all the privileges they don't need. This

causes a few problems. The privileges that need to be dropped are not

necessarily the same on all systems, and there becomes a proliferation of

privilege-manipulation code on the system. Tools that allow the designer or

administrator to start software with the minimal set of privileges is required.

Another issue is that Linux systems do not have a sufficiently fine-grained

privilege model. For example, it is impossible to restrict the use of a specific IP

address and/or port range to a limited number of processes. Ideally, it should be

possible to allow a specific process to bind to port 80 (WWW) on a single

interface. Multi-level security (MLS) implementations can be used to prohibit

processes from accessing network interfaces they do not need to access.

 SECURITY ENVIRONMENT

The following sections borrow heavily from [CSPP-OS03], an example Common

Criteria profile for COTS operating systems.

TARGETS OF EVALUATION

Name Assumption Rationale

A.COTS The TOE is constructed from

near-term achievable off the

shelf Linux technology.

This follows from the charter

of CGL.

A.MALICIOUS-

INSIDER

The TOE is not expected to be

able to sufficiently mitigate the

risks resulting from the

malicious abuse of authorized

privileges.

In CGL environments the

primary threats are network-

based attacks, so the focus is

on this type of threat.

A.SOPHISTICATED-

ATTACK

The TOE is expected to be

able to mitigate risks resulting

from the application of

moderately sophisticated

attack methods1.

Internet-based CGL

applications are subject to

network-based attacks, and

should be more resistant to

attacks than general-purpose

systems.

A.APPLICATION-

HOSTILE

The network containing the

TOE is used to provide a

limited set of applications to

an untrusted network, not to

provide shell access to users

at different trust levels.

Communications

architectures are moving

away from general-purpose

computing to application

servers in hostile

environments.

1 Unlike the COTS draft CC profile.

ENVIRONMENT

Name Assumption Rationale

A.ADMIN The security features of the

TOE are competently

administered on a

continuous basis.

It is essential for security

that administration is both

competent and continuous.

A.ADMIN-ONLY Authenticated access to the

TOE is only provided to

those charged with

maintaining the TOE and the

applications it provides.

CGL is not targeting

general purpose

computing.

A.USER-NEED Authenticated users, such as

administrators, recognize the

need for a secure CGL

environment.

Application administrators

value security of

applications which they

maintain.

A.USER-TRUST Authenticated users, such as

administrators, are generally

trusted to perform

discretionary actions in

accordance with security

policies.

Access is restricted to

administrators maintaining

applications.

A.NET-SEGREGATION Network connections in the

management, control and

end-user planes are

adequately segregated. One

approach is to use physically

separate networks. Another

approach is the use of

cryptographic methods for

authentication, integrity

verification and data

The end user should not be

able to gain access to

either the control or

management plane.

Name Assumption Rationale

confidentiality.

A.CLUSTER-

SEGREGATION

If the TOE is part of a cluster

the intra-cluster

communications should be

adequately segregated from

any other traffic, either by

physical separation or by the

use of cryptographic

methods for authentication,

integrity verification and data

confidentiality.

Results are likely to be

disruptive if cluster traffic is

tampered with or captured.

For this reason, separate

interconnect is preferable.

A.PROCESS-UNTRUSTED Processes running on the

TOE cannot always be

trusted to perform their

duties as designed, and may

attempt to access resources

it is not meant to access.

It is often impossible to run

legacy code in restricted

environments such as

chroot jails. The TOE

should support a safe way

to run this type of code in

such a way that program

bugs or vulnerability

exploits only have limited

consequences.

ORGANIZATIONAL SECURITY POLICIES

Name Policy Rationale

P.ACCESS Access rights to specific data

objects are determined by

object attributes assigned to

that object, user identity,

user attributes, and

environmental conditions as

defined by the security

Linux supports policies that

grant or deny access to

objects using rules driven

by attributes of the user

(such as user identity),

attributes of the object

(such as permission bits),

Name Policy Rationale

policy. type of access (such as

read or write), and

environmental conditions

(such as time-of-day).

P.ACCOUNT Users must be held

accountable for security-

relevant actions.

Organizational policies

should require that users

are held accountable for

their actions. This facilities

after-the-fact investigations

and providing some

deterrence to improper

actions.

P.COMPLY The implementation and use

of the organization's CGL

systems must comply with all

applicable laws, regulations,

and contractual agreements

imposed on the organization.

The organization will meet

all requirements imposed

upon it from outside

governmental or

contractual obligations.

P.DUE-CARE The organization‟s CGL

systems must be

implemented and operated in

a manner that represents

due care and diligence with

respect to the risks to the

organization.

It is important that the level

of security afforded by the

CGL system be in

accordance with best

practices within the

business or government

sector in which the

organization is placed.

P.INFO-FLOW Information flow between

application components must

be in accordance with

established information flow

policies.

This document includes

information flow control as

this is needed in many

environments. While this

might not be implemented

by mechanisms within the

Name Policy Rationale

Linux TOE, the CGL

system, of which the TOE

is a part, will likely have to

meet this policy.

P.KNOWN Except for well-defined set of

allowed operations, users of

the TOE must be identified

and authenticated before

TOE access is granted.

Beyond a well-defined set

of actions such as read

access to a public web-

server, there is a finite

community of known,

authenticated users who

are authenticated before

being allowed access.

P.NETWORK The organization's IT security

policy must be maintained in

the environment of

distributed systems

interconnected via insecure

networking.

CGL system will likely

connect through untrested

networks and these

connections should not

compromise security of a

CGL system.

P.PHYSICAL The processing resources of

the TOE that must be

physically protected in order

to ensure that security

objectives are met will be

located within controlled

access facilities that mitigate

unauthorized, physical

access.

A TOE will not be able to

meet its security

requirements unless at

least a minimum degree of

physical security is

provided.

P.SURVIVE The IT system, in conjunction

with its environment, must

resist, be resilient to, and

detect a security breach and

recover from the breach

Linux systems will provide

a measure of their

resilience through

functionality and

assurances that resist,

Name Policy Rationale

when possible.

detect, and recover from

security breaches.

For sophisticated attacks, a

large portion of this

resilience is provided by

the TOE environment.

P.TRAINING Authenticated user of the

system must be adequately

trained. This enables the

users to effectively

implement organizational

security policies with respect

to their discretionary actions.

It also supports the need for

non-discretionary controls

implemented to enforce

these policies.

Once granted legitimate

access, authenticated

users are expected to use

CGL resources and

information only in

accordance with the

organizational security

policy. In order for this to

be possible, these users

must be adequately trained

both to understand the

purpose and need for

security controls and to be

able to make secure

decisions with respect to

their discretionary actions.

P.USAGE The organization's IT

resources must be used only

for authorized purposes.

Linux systems must, in

conjunction with its

environment, ensure that

the organization's

information technology is

only used for authorized

purposes.

Name Policy Rationale

P.CONTAINMENT The TOE must be able to

mitigate the risks of common

threats to the integrity of

applications and data caused

by security-relevant errors in

applications.

Linux systems should limit

the damage done by buffer

overflows and other

common attacks. This is

achieved through privilege

minimization and process

containment mechanisms

such as jails.

P.PRIVILEGE-MIN The TOE must be able to run

applications with a minimal

set of necessary privileges.

Linux systems should allow

granting of privileges on a

need-only basis. The

nothing-or-everything

model of 'root' privileges is

not acceptable.

P.NET-SEGREGATION The TOE must be configured

to provide adequate

segregation between the

management, control and

end-user planes, using

separate networks,

cryptographic methods, or

both.

As per the requirements in

X.805, the planes should

be adequately segregated.

P.CLUSTER-

SEGREGATION

If the TOE is part of a cluster

the intra-cluster traffic must

be adequately segregated

from any other traffic.

As per the requirements in

X.805, the planes should

be adequately segregated

including intra-cluster

traffic.

P.PROCESS-NET-

SEGREGATION

The TOE must allow the

configuration of access

controls on network

resources in such a way that

Network resources should

be segregated such that

access is limited to the

planes required for the

Name Policy Rationale

a process's network access

can be restricted to the

minimum subset necessary.

network process‟s

operation.

P.PROCESS-FILE-

SEGRAGATION

The TOE must allow the

configuration of access

controls on files in such a

way that the process can

only access necessary files.

Limit the impact of process

subversion of a process

through buffer overflow

attacks, insertion attacks

and other common attacks.

P.TRACEABLE-TOE The TOE should log

sufficient information for

security-relevant events.

Information such as user

and process identifiers are

needed for forensics and

log file analysis.

SECURITY THREATS

This section borrows from a published example Common Criteria protection

profile. According to [CSPP-OS03] the following threats do not have to be

addressed by the target of evaluation. We believe that given some of the

intended uses of this document we do need to address these two threats where

possible.

Threat Description of Threat

P.ACCESS Access rights to specific data objects are determined by

object attributes assigned to that object, user identity,

user attributes, and environmental conditions as defined

by the security policy

Linux supports organizational policies that grant or deny

access to objects using rules driven by attributes of the

user (such as user identity), attributes of the object (such

as permission bits), type of access (such as read or

Threat Description of Threat

write), and environmental conditions (such as time-of-

day).

T.DENIAL-

SOPHISTICATED

Sophisticated denial of network attacks include such

threats as:

 SYN flooding

 IP fragmentation attacks

T.ENTRY-

SOPHISTICATED

Sophisticated technical attacks by unauthenticated users,

such as:

 Buffer overflow attacks

 Brute force or dictionary attacks on

password

 Network sniffing attacks

 Man-in-The-Middle attacks

 Session hijacking

The following threats must be addressed by the target of evaluation:

Threat Description of Threat

T.ACCESS-TOE An authorized user may gain non-malicious access to a

resource or information controlled by the TOE. Such

attacks include:

Threat Description of Threat

 Exploitation of improperly configured access

permissions.

 Information exposure through system errors.

 Simple exploitation of vulnerabilities.

T.AUDIT-

CONFIDENTIALITY-TOE

Disclosure of security event records to unauthorized users

or processes. This is caused by:

 Improperly configured permissions for log files.

 Exploitable SUID programs.

T.AUDIT-CORRUPTED-

TOE

Unauthorized modification or destruction of security event

records. This is caused by:

 Improperly configured access permissions for log

files.

 Easily exploitable SUID programs.

T.CRASH-TOE Compromise of secure state when system crashes

because the system does not fail securely.

T.DENIAL-TOE Unsophisticated denial-of-service attacks. Examples

include:

 Creating enough Telnet or SSH sessions

to lock out other users.

Threat Description of Threat

 Flood ping a system.

T.OBSERVE-TOE Security compromise going undetected, for example:

 The installation of a 'root kit'2 goes

undetected.

 A buffer overflow and the following security

compromise goes undetected.

 Auditing is not configured to store all

relevant security events.

T.RECORD-EVENT-TOE Security-relevant events going unrecorded which is

caused by:

 Overloading the auditing system.

 Large quantities of log events that 'rotate' files

containing a security-relevant event out of

existence.

T.RESOURCES Exhaustion of system resources, which can be caused by:

 Failing to configure the system resource limits for

number of processes, memory or other resources.

2 A root kit is a set of programs that compromise security and usually hide their own existence.

Threat Description of Threat

 Underpowered systems.

T.TOE-CORRUPTED The security of the TOE is intentionally corrupted,

enabling future attack. This can include back doors left by

programmers or intentional improper configuration of

security-relevant systems (e.g. through the use of

unauthenticated install media)

According to [CSPP-OS03] the following set of threats does not have to be

addressed by the OS (TOE) alone. The environment should also play a role in

addressing these vulnerabilities:

 SECURITY OBJECTIVES

ENVIRONMENTAL SECURITY OBJECTIVES

Objective Description Threat or Policy

O.ACCESS-NON-

TECHNICAL

The IT other than the TOE

environment must provide sufficient

protection against non-technical

attacks by authenticated users for

non-malicious purposes. This will be

accomplished primarily via prevention

with a goal of high effectiveness.

Personnel security and user training

and awareness will provide a major

part of achieving this objective.

P.TRAINING

O.ACCESS-NON-

TOE

The IT other than the TOE must

provide public access and access by

authenticated users to the resources

P.ACCESS

Objective Description Threat or Policy

and actions for which they have been

authorized and over which the TOE

does not exercise control. The focus

is on prevention with a high degree of

effectiveness.

O.ACCOUNT-NON-

TOE

The TOE must ensure, for actions

under its control or knowledge, that

all users can subsequently be held

accountable for their security relevant

actions. This is expected with a high

degree of effectiveness.

P.ACCOUNT

T.TRACEABLE-NON-

TOE

T.RECORD-EVENT-

NON-TOE

T.AUDIT-CORRUPTED-

NON-TOE

T.AUDIT-

CONFIDENTIALITY-

NON-TOE

O.APPLICATION-

TOOLS

The TOE must provide a reasonable,

current set of security tools and

libraries for use by applications.

P.DUE-CARE

T.INSTALL

T.OPERATE

O.AUTHORIZE-

NON-TOE

The TOE must provide the ability to

specify and manage user and system

process access rights to individual

processing resources and data

elements under its control, supporting

the organization‟s security policy for

access control. This is expected with

P.ACCESS

Objective Description Threat or Policy

a high degree of effectiveness.

NOTE: This includes initializing,

specifying and managing (1) object

security attributes, (2) active entity

identity and security attributes, and

(3) security relevant environmental

conditions.

O.AVAILABLE-

NON-TOE

The IT other than the TOE must

protect itself from unsophisticated,

denial-of-service attacks. This is a

combination of prevention, detection

and recovery with a high degree of

effectiveness.

P.SURVIVE

T.DENIAL-NON-TOE

O.BYPASS-NON-

TOE

For access not controlled by the TOE,

IT other than the TOE must prevent

errant or non-malicious, authorized

software or users from bypassing or

circumventing security policy

enforcement. This will be

accomplished with high effectiveness.

NOTE: This objective is limited to

„non-malicious‟ because IT controls in

the notional CSPP system are not

expected to provide sufficient

mitigation for the greater negative

impact that „malicious‟ implies.

T.ACCESS-NON-TOE

O.DETECT-

SOPHISTICATED

The TOE environment must provide

the ability to detect sophisticated

attacks and the results of such

attacks (e.g., corrupted system state).

The goal is for moderate

P.SURVIVE

T.SYSTEM-CORRUPTED

Objective Description Threat or Policy

effectiveness.

O.ENTRY-NON-

TECHNICAL

The TOE environment must provide

sufficient protection against non-

technical attacks by other than

authenticated users. This will be

accomplished primarily via prevention

with a goal of high effectiveness.

User training and awareness will

provide a major part of achieving this

objective.

P.TRAINING

O.ENTRY-NON-

TOE

For resources not controlled by the

TOE, IT other than the TOE must

prevent logical entry using

unsophisticated, technical methods,

by persons without authority for such

access. This is clearly a prevent

focus and is to be achieved with a

high degree of effectiveness.

P.USAGE

T.ENTRY-NON-TOE

O.INFO-FLOW The TOE environment must ensure

that any information flow control

policies are enforced - (1) between

system components and (2) at the

system external interfaces. This will

be accomplished by preventing

unauthorized flows with high

effectiveness.

P.INFO-FLOW

O.KNOWN-NON-

TOE

The IT other than the TOE must

ensure that, for all actions under its

control and except for a well-defined

set of allowed actions, all users are

identified and authenticated before

being granted access. This is

P.KNOWN

Objective Description Threat or Policy

expected with a high degree of

effectiveness.

O.OBSERVE-NON-

TOE

The IT other than the TOE must

ensure that its security status is not

misrepresented to the administrator

or user. This is a combination of

prevent and detect and, considering

the potentially large number of

possible failure modes, is to be

achieved with a moderate, verses

high, degree of effectiveness.

T.OBSERVE-NON-TOE

O.PHYSICAL Those responsible for the TOE must

ensure that those parts of the TOE

critical to security policy are protected

from physical attack that might

compromise IT security. This will be

accomplished primarily via prevention

with a goal of high effectiveness.

P.PHYSICAL

T.PHYSICAL

TOE SECURITY OBJECTIVES

Objective Description Threat or Policy

O.ACCESS-TOE The TOE must provide public access

and access by authenticated users

to those TOE resources and actions

for which they have been authorized.

This will be accomplished with high

effectiveness.

P.ACCESS

O.ACCOUNT-TOE The TOE must ensure, for actions

under its control or knowledge, that

P.ACCOUNT

Objective Description Threat or Policy

all TOE users can subsequently be

held accountable for their security

relevant actions. This will be done

with moderate effectiveness, in that

it is anticipated that individual

accountability might not be achieved

for some actions.

T.TRACEABLE-TOE

T.RECORD-EVENT-TOE

T.AUDIT-CORRUPTED-

TOE

T.AUDIT-

CONFIDENTIALITYTOE

O.AUTHORIZE-

TOE

The TOE must provide the ability to

specify and manage user and

system process access rights to

individual processing resources and

data elements under its control,

supporting the organization‟s

security policy for access control.

This will be accomplished with high

effectiveness.

P.ACCESS

O.AVAILABLE-

TOE

The TOE must protect itself from

unsophisticated, denial-of-service

attacks. This will include a

combination of protection and

detection with high effectiveness.

P.SURVIVE

T.DENIAL-TOE

O.BYPASS-TOE The TOE must prevent errant or

non-malicious, authorized software

or users from bypassing or

circumventing TOE security policy

enforcement. This will be

accomplished with high

effectiveness.

T.ACCESS-TOE

Objective Description Threat or Policy

NOTE: This objective is limited to

„non-malicious‟ because CSPP-OS

controls are not expected to be

sufficient mitigation for the greater

negative impact that „malicious‟

implies.

O.DETECT-TOE The TOE must enable the detection

of TOE specific insecurities. The

goal is high effectiveness for lower

grade attacks.

P.SURVIVE

T.TOE-CORRUPTED

O.ENTRY-TOE The TOE must prevent logical entry

to the TOE using unsophisticated,

technical methods, by persons

without authority for such access.

This will be accomplished with high

effectiveness.

P.USAGE

T.ENTRY-TOE

O.KNOWN-TOE The TOE must ensure that, for all

actions under its control and except

for a well-defined set of allowed

actions, all users are identified and

authenticated before being granted

access. This will be accomplished

with high effectiveness.

P.KNOWN

O.OBSERVE-TOE The TOE must ensure that its

security status is not misrepresented

to the administrator or user. This is a

combination of prevent and detect

and, considering the potentially large

number of possible failure modes, is

to be achieved with a moderate,

T.OBSERVE-TOE

Objective Description Threat or Policy

verses high, degree of effectiveness.

O.RECOVER-TOE The TOE must provide for recovery

to a secure state following a system

failure, discontinuity of service, or

detection of an insecurity. This will

be accomplished with a high

effectiveness for specified failures

and a low effectiveness for failures

in general.

P.SURVIVE

T.CRASH-TOE

O.RESOURCES The TOE must protect itself from

user or system errors that result in

shared resource exhaustion. This

will be accomplished via protection

with high effectiveness.

P.SURVIVE

T.RESOURCES

JOINT SECURITY OBJECTIVES

Objective Description Threat or Policy

O.ACCESS-

MALICIOUS

The TOE controls will help in

achieving this objective, but will not

be sufficient. Additional,

environmental controls are required

to sufficiently mitigate the threat of

malicious actions by authenticated

users. This will be accomplished by

focusing on deterrence, detection,

and response with a goal of

moderate effectiveness.

T.ACCESS-MALICIOUS

O.COMPLY The TOE environment, in

conjunction with controls

implemented by the TOE, must

support full compliance with

P.COMPLY

Objective Description Threat or Policy

applicable laws, regulations, and

contractual agreements. This will be

accomplished via some technical

controls, yet with a focus on non-

technical controls to achieve this

objective with high effectiveness.

O.DETECT-

SYSTEM

The TOE, in conjunction with other

IT in the system, must enable the

detection of system insecurities. The

goal is high effectiveness for lower

grade attacks.

P.SURVIVE

T.SYSTEM-

CORRUPTED

O.DUE-CARE The TOE environment, in

conjunction with the TOE itself, must

be implemented and operated in a

manner that clearly demonstrates

due-care and diligence with respect

to IT-related risks to the

organization. This will be

accomplished via a combination of

technical and non-technical controls

to achieve this objective with high

effectiveness.

P.DUE-CARE

O.MANAGE Those responsible for the system (in

conjunction with mechanisms

provided by the TOE) must ensure

that it is managed and administered

in a manner that maintains IT

security. This will be accomplished

with moderate effectiveness.

T.ADMIN-ERROR

O.NETWORK The system must be able to meet its

security objectives in a distributed

environment. This will be

accomplished with high

effectiveness.

P.NETWORK

Objective Description Threat or Policy

O.OPERATE Those responsible for the system (in

conjunction with mechanisms

provided by the TOE) must ensure

that the system is delivered,

installed, and operated in a manner

which maintains IT security. This will

be accomplished with moderate

effectiveness.

T.INSTALL

T.OPERATE

P.TRAINING

O.RECOVER-

SYSTEM

The system must provide for

recovery to a secure state following

a system failure, discontinuity of

service, or detection of an insecurity.

This will be accomplished with some

prevention and a majority of detect

and respond, with high effectiveness

for specified failures. For general

failure, this will be accomplished

with low effectiveness.

P.SURVIVE

T.CRASH-SYSTEM

O.ENTRY-

SOPHISTICATED

The TOE and the environment must

sufficiently mitigate the threat of an

individual unauthenticated user

gaining unauthorized access via

sophisticated, technical attack. This

is accomplished by focusing on

prevention, detection and response

with a goal of high effectiveness.

T.ENTRY-

SOPHISTICATED

O.DENIAL-

SOPHISTICATED

The TOE and the environment must

maintain system availability in the

face of sophisticated denial-of-

service attacks. The focus is on

prevention, detection and response

with a goal of high effectiveness.

P.SURVIVE

T.DENIAL-

SOPHISTICATED

O.DETECT- The TOE and the environment must

provide the ability to detect

P.SURVIVE

Objective Description Threat or Policy

SOPHISTICATED sophisticated attacks and the results

of such attacks such as corrupted

system state. The goal is for high

effectiveness.

T.SYSTEM-

CORRUPTED

O.CONTAINMENT The TOE and the environment must

provide the ability to constrain the

effect of a security failure of an

application to that application.

P.CONTAINMENT

P.PRIVILEGE-MIN

P.SURVIVE

T.SYSTEM-

CORRUPTED

 SECURITY REFERENCES

 ITU03: ITU-T, Security in Telecommunications and Information

Technology, 2003

 CSPP-OS03: Gary Stoneburner, COTS Security Protection Profile -

Operating Systems (CSPP-OS), 20

11. CGL GAPS

Following are the features or aspects of Carrier Grade Linux that, at the time of

this publication, the CGL Workgroup has identified as un-implemented in the

open source community or has not been widely adopted and proven ready for

carrier grade applications. These features are listed here to provide information

for developers and distribution vendors on key areas of differentiation that are of

particular interest to carriers.

AVL.3.2 FORCED UN-MOUNT

ID PID Name

GAP.1.0 AVL.3.2 Forced Un-mount

CGL specifies that carrier grade Linux shall provide support for forced unmounting of a

file system. The un-mount shall work even if there are open files in the file system.

Pending requests shall be ended with the return of an error value when the file system is

unmounted.

AVL.3.3 FORCED UN-MOUNT APPLICATION NOTIFICATION

ID PID Name

GAP.2.0 AVL.3.3 Forced Un-mount Application Notification

CGL specifies that carrier grade Linux shall provide a notification mechanism when a

forced un-mount of a file system occurs.

AVL.14.0 EXCESSIVE CPU CYCLE USAGE DETECTION

ID PID Name

GAP.3.0 AVL.14.0 Excessive CPU Cycle Usage Detection

CGL specifies that carrier grade Linux shall provide a mechanism that detects excessive

CPU cycle usage by any process or thread. To enable detection, the following

capabilities shall be provided:

 Communication between the monitoring process and the kernel.

 Registering a list of processes or threads and their allowed CPU cycle

thresholds.

 Ability to define policy based on process events including

process/thread creation and exit.

 Ability to take action whenever an event occurs.

 Ability to set the CPU cycle threshold to a resolution of one

millisecond.

AVL.28.0 SUPPORT OF MLOCKED PAGE LIMITS

ID PID Name

GAP.4.0 AVL.28.0 Support of Mlocked Page Limits

CGL specifies that carrier grade Linux shall support system wide limits on mlocked

pages. This shall be configurable and enforced when the mlock page count exceeds the

maximum setting. Either explicitly through a system call or implicitly through a page fault.

The behavior shall be identical to per process mlocked limit when this system wide limit

is exceeded.

AVL.29.0 COARSE RESOURCE ENFORCEMENT

ID PID Name

GAP.5.0 AVL.29.0 Coarse Resource Enforcement

The CGOS needs to provide mechanisms that allow resource consumption constraints to

be applied to an individual thread, a process and all processes running with a particular

user ID or group ID, when resource consumption limits are exceeded.

These resource consumption constraints should follow today's mechanisms for resource

exhaustion for individual processes and groups of processes. Constraints must have

actions that can be selected when an application is first started. Such actions include

"log", "signal process" and "terminate process".

This requirement applies to CPUs as well as memory.

CAF.2.3 DELIBERATE TCP SESSION TAKEOVER

ID PID Name

GAP.6.0 CAF.2.3 Deliberate TCP Session Takeover

CGL specifies a mechanism to synchronize TCP sockets, buffer structures, and

sequence numbers so that redundant nodes may take over TCP sessions originated on

other nodes. A deliberate TCP session takeover assumes that TCP session(s) are

transferred deliberately and not as the result of unexpected node failure(s).

CAF.2.4 TCP SESSION TAKEOVER ON NODE FAILURE

ID PID Name

GAP.7.0 CAF.2.4 TCP Session Takeover on Node Failure

CGL specifies a mechanism to synchronize TCP sockets, buffer structures, and

sequence numbers so that when a critical resource fails, such as a CPU, memory, or

kernel, a redundant node may take over TCP sessions originated on the failed node.

Note that when the TCP session(s) are assumed by a redundant node, the sessions will

resume from the last checkpoint. TCP traffic should continue even if there is a conflict

between the last TCP state of the failed node and the checkpointed TCP state on the

redundant node.

CMON.1.4 CLUSTER-WIDE APPLICATION MONITOR

ID PID Name

GAP.8.0 CMON.1.4 Cluster-Wide Application Monitor

CGL specifies that carrier grade Linux shall provide a cluster-wide logging mechanism. A

cluster-wide log shall contain node identification, message type, and cluster time

identification. This cluster-wide log may be implemented as a central log or as the

collection of specific node logs.

SFA.14.0 PER THREAD CPU TIME LIMITS AND SIGNALING

ID PID Name

GAP.9.0 SFA.14.0 Per Thread CPU Time Limits and Signaling

CGL specifies that carrier grade Linux shall provide a method to accurately track

CPU time consumed by an individual thread. It shall also provide a method to set

CPU threshold time used by an individual thread. This method shall also include

the ability to send a signal to an individual thread if its CPU threshold time is

exceeded.

SMM.6.0 BOOT CYCLE DETECTION

ID PID Name

GAP.10.0 SMM.6.0 Boot Cycle Detection

CGL specifies that carrier grade Linux shall provide support for detecting a

repeating reboot cycle due to recurring failures. This detection should happen in

user space before system services are started. This type of failure requires a

response due to the negative impact of repeatedly bringing up and taking down

services. A configurable policy is needed to set thresholds of cycling and desired

shutdown actions, such as exponential back off, shutdown, or notifying

administrators.

SMM.7.8 SUPPORT FOR USER LOCKED PAGE REPORTING

ID PID Name

GAP.11.0 SMM.7.8 Support for User Locked Page Reporting

CGL specifies that in addition to current memory usage reporting, the OS shall report the

count of mlocked pages to accurately determine how much memory may be reclaimed by

the page frame reclaim algorithm. Based on mlocked page count and current memory

usage reporting, a more accurate amount of free physical memory may be determined. In

addition current overcommit policies shall take mlocked pages into account to accurately

enforce memory overcommit policies for which the count of mlocked pages is applicable.

SMM.7.9 SUPPORT FOR PRECISE PROCESS ACCOUNTING

ID PID Name

GAP.12.0 SMM.7.9 Support for Precise Process Accounting

CGL specifies that carrier grade Linux shall support precise process accounting of CPU

usage. This shall be accomplished by time stamping various kernel execution paths

using the native platform high resolution counter. This accounting activity shall be run-

time configurable, including partial or total disabling, via the proc file system. When totally

disabled no additional overhead will be measurable. Disabling or enabling precise

accounting shall not affect Linux native tick accounting. All data shall be accessible from

the proc file system. For task perCPU metrics, a range of 1 through N rows may be

configured such that each row accrues metrics for one CPU, a range in between 1 and N

CPUs (all metrics summed together). Where N is the number of logical CPUs. Additional

Sub-requirements follow.

Sub-requirement 1: The following metrics shall be accrued on per-CPU basis:

 Per task CPU usage user, system, interrupt (in tasks context), and time spent on

run queue

 System wide CPU usage idle, user, system, interrupt, softirq

 Per task occurrence counts of system calls, signals, reschedules, voluntary

blocks, preemption due to higher priority task and preemptions due to time slice

expirations.

 System wide occurrence counts of interrupts, system calls, signals, and softirqs,

with softirqs grouped by types.

Sub-requirement 2: A per task table of schedule latency counts shall be implemented

such that a schedule latency value is indexed into predetermined ranges, and the count

for that range is incremented. For example a table size of three will correspond to three

scheduling latency ranges such as:

 index 0: 0-10 milliseconds

 index 1: 10-100 milliseconds

 index 2: greater than 100 milliseconds The table size and ranges may be build

time configurable

Sub-requirement 3: Certain OS timers and CPU caps may be configured to increment or

ID PID Name

expire precisely with the initial list being SIGXCPU, SIGVTALARM, SIGPROF.

SMM.10.0 SYSTEM INITIALIZATION ERROR HANDLING ENHANCEMENTS

ID PID Name

GAP.12.0 SMM.10.0 System Initialization Error Handling Enhancements

CGL specifies that carrier grade Linux shall provide a mechanism to detect errors during

system initialization. When such an initialization error occurs, this mechanism shall be

able to report the event to a remote system over the network. CGL further specifies the

following error conditions shall apply to this requirement:

 The kernel image fails before init is started

 The init process fails to fully complete the startup initialization to the point where

the conventional error reporting mechanisms are available

SPM.5.0 MANUAL SOFTWARE ROLLBACK

ID PID Name

GAP.13.0 SPM.5.0 Manual Software Rollback

CGL specifies that carrier grade Linux shall provide mechanisms that allow manual

rollback to a previous version of software without having to reinstall the previous version.

SPM.6.0 AUTOMATIC SOFTWARE ROLLBACK

ID PID Name

GAP.14.0 SPM.6.0 Automatic Software Rollback

CGL specifies that carrier grade Linux shall provide mechanisms that allow automatic

rollback with configurable triggers to a previous version of software without having to

reinstall the previous version.

PMS.5.2 ISCSI INITIATOR IPV6 SUPPORT

ID PID Name

GAP.15.0 PMS.5.2 iSCSI Initiator IPv6 Support

CGL specifies that the iSCSI Initiators implemented by carrier grade Linux should

support the IPv6 protocol. This would enable the iSCSI Initiator nodes to connect to

iSCSI targets only supporting IPv6 addresses.

PRF.1.6 PROTECTING AGAINST PRIORITY INVERSION ON MUTEX

ID PID Name

GAP.16.0 PRF.1.6 Protecting Against Priority Inversion On Mutex

CGL specifies that carrier grade Linux shall support a mechanism for protecting against

priority inversion when using a mutex to synchronize tasks. This mechanism shall

support transitive priority inheritance and resolve cases where several mutexes are

owned by the same task. It shall be supported in UP and SMP contexts.

PRF.2.4 SUPPORT FOR TASK EXCLUSIVE BIND TO LOGICAL CPU

ID PID Name

GAP.17.0 PRF.2.4 Support for Task Exclusive Bind to Logical CPU

CGL specifies that carrier grade Linux shall support exclusive bind of processes or

threads to any number of logical CPUs. Once the binding is established the logical

CPU(s) become exclusively dedicated to the execution of the bound processes/threads,

and idle. CGL further specifies the following conditions shall also apply to this

requirement:

 There must be at least one logical CPU available for unbound tasks. Because of

this, binding need not be supported on systems with only one logical CPU

 A logical CPU is defined as any CPU or part of a CPU/node that Linux represents

as a single processing unit to the user

PRF.11.1 APPLICATION (PRE)LOADING NON-ROOT

ID PID Name

GAP.18.0 PRF.11.1 Application (Pre)loading Non-Root

CGL specifies that carrier grade Linux shall provide support for the preloading of an

application even when the application is not executing as root. A configuration capability

must exist to allow the system loader to determine an application's eligible for preloading.

The action of preloading an application must not overload the system memory. The

configuration capability must provide a control that allows the application to specify what

is to be done if it can't be pre-loaded. Options are:

 Load anyway as a normal (pageable) application.

 Fail and don't load the application.

Regardless of the option used, any failure to pre-load the application must be logged.

PRF.11.2 APPLICATION (PRE)LOADING LIMITS

ID PID Name

GAP.19.0 PRF.11.2 Application (Pre)loading Limits

CGL specifies that carrier grade Linux shall provide mechanisms to avoid overloading a

system when preloading applications. Specifically, it shall be possible to specify the total

amount of memory reserved (pinned) by preloading applications.

SEC.7.4 EXECUTION QUOTAS

ID ID Name

GAP.20.0 SEC.7.4 Execution Quotas

CGL specifies that carrier grade Linux shall provide support for per-user CPU execution

quotas.

SEC.9.0 UNIFIED CRYPTOGRAPHIC FRAMEWORK

ID PID Name

GAP.21.0 SEC.9.0 Unified Cryptographic Framework

To provide a cryptographic framework that supports encryption and message hashing for

both kernel and user applications, secure tamper-proof storage for security-relevant data

such as keys, and registration of cryptographic capabilities.

The CGOS needs to provide a unified framework for optimized implementations of

common cryptographic (encryption and message hashing) algorithms.

Carrier grade solutions rely on communication protocols that have stringent security

requirements. Typically, these protocols are based on standard security application

providers such as SSL, SSH, IKE and JCE.

Data integrity is accomplished through mechanisms (message hashing) that check that

data transmitted across the network or stored on/retrieved from disk without encryption

are not modified. Data confidentiality is accomplished through mechanisms (encryption)

that convert the data to a form not easily reversible, before being transmitted or stored.

The use of both encryption and message hashing for data that are transmitted or stored

demands a cryptographic framework that is available to both the kernel and user

applications and that transparently makes use of whatever hardware encryption

capabilities are available.

A prerequisite to the security capabilities described above is the ability to store in a

secure, tamper-proof way security-relevant data, such as keys used to verify the integrity

of downloaded data. Keys can be loaded during system assembly, and additional keys

can be provided using a secure mechanism after the system is started. Such a

mechanism is almost always a combination of hardware, operating system and firmware.

See also Trust Mechanisms (CGOS-3.1).

A unified cryptographic framework must expose to security providers a common interface

to algorithms not only for various encryption algorithms (at the very minimum 3DES and

AES) but also for message hashing (MD5, SHA1), message signing (RSA, DSA, DH)

and random number generation. See the RSA cryptographic token interface standard

PKCS #11 [19].

Hardware acceleration is also desirable for carrier grade components that use

encryption. The cryptographic framework must offer mechanisms whereby device drivers

can register the cryptographic hardware. A device with a cryptographic capability (key

store, encryption algorithm) must be able to register the capability with the cryptographic

framework. Registration includes, for example, the type of cryptographic capability,

ID PID Name

available algorithms, and number of contexts. When a driver initializes, it must register

any cryptographic capabilities possessed by the device(s) it controls.

When a kernel thread or user process requests that a particular algorithm be used, the

cryptographic framework must try to use the most efficient implementation based on the

availability of resources in a transparent manner.

Algorithms must be easy to export/import. Cryptographic keys must be easily reduced to

56 bits, or cryptography must be easy to switch off.

STD.3.2.7 SCTP SIGNING CHUNKS

ID PID Name

GAP.22.0 STD.3.2.7 SCTP signing chunks

CGL specifies that carrier grade Linux shall provide the functionality listed in the Internet

draft below.

 draft-ietf-tsvwg-sctp-auth-04.txt: allows an SCTP sender to sign chunks using

shared keys between the sender and receiver to prevent blind attacks against

static Verification tag.

GAP.23.0 FILE SYSTEM BLOCK MIRRORING

ID PID Name

GAP.23.0 File System Block Mirroring

CGL specifies that carrier grade Linux shall provide support for a file system that

provides RAID-1 style mirroring support where alternate mirrors can be consulted if the

checksum fails for any specific block prior to reporting a failure to the file system client.

GAP.24.0 ONLINE FILE SYSTEM INTEGRITY AND CONSISTENCY CHECKING

ID PID Name

GAP.24.0 Online File System Integrity and Consistency Checking

CGL specifies that carrier grade Linux shall provide support for a file system that allows

data and metadata consistency and integrity checking on a file system while mounted

and in use with the fsck or similar tool.

This consistency and integrity checking should be more detailed than the fast recovery

integrity checks done from a partially completed update described in AVL.X.2.

GAP.25.0 FILE SYSTEM RESOURCE ALLOCATION GUARANTEES

ID PID Name

GAP.25.0 File System Resource Allocation Guarantees

CGL specifies that carrier grade Linux shall provide support for a file system that allows

for pre-allocation of space for files, better ensuring data is not overly fragmented on the

storage media, with an API similar to the posix_fallocate() POSIX function without

incurring the performance overhead associated with that API. Deviation from the

posix_fallocate() is permissible provided the API is mechanically translatable.

GAP.26.0 FILE SYSTEM ONLINE DE-FRAGMENTATION

ID PID Name

GAP.26.0 File System Online De-fragmentation

CGL specifies that carrier grade Linux shall provide support for a file system that allows

for de-fragmentation of on-disk data while the file system is mounted and in use.

GAP.27.0 ONLINE FILE SYSTEM EXPANSION

ID PID Name

GAP.27.0 Online File System Expansion

CGL specifies that carrier grade Linux shall provide the ability to expand a mounted file

system without service interruption.

GAP.28.0 ONLINE FILE SYSTEM REDUCTION

ID PID Name

GAP.28.0 Online File System Reduction

CGL specifies that carrier grade Linux shall provide the ability to reduce the size of a live

file system without service interruption.

GAP.29.0 REGISTRATION OF CRYPTOGRAPHIC CAPABILITIES

ID PID Name

GAP.29.0 Registration of Cryptographic Capabilities

CGL specifies that carrier grade Linux shall provide a method for registering and

advertising the cryptographic capabilities of the system to local and remote clients.

GAP.30.0 FILE ACCESS TRACING: LOGGING

ID PID Name

GAP.30.0 File Access Tracing: Logging

CGL specifies that carrier grade Linux shall provide the ability to record and report file

access events, preserving them to persistent / recoverable media that will be preserved

across system crashes and/or reboots.

GAP.31.0 ASYNCHRONOUS HARDWARE ACCELERATED CRYPTO SUPPORT

ID PID Name

GAP.31.0 Asynchronous Hardware Accelerated Crypto Support

CGL specifies that carrier grade Linux shall provide facilities for applications to

asynchronously perform encryption when a hardware crypto engine is available.

GAP.32.0 ASYNCHRONOUS HARDWARE ACCELERATED CRYPTO SUPPORT:

IPSEC

ID PID Name

GAP.32.0 Asynchronous Hardware Accelerated Crypto Support: IPSec

CGL specifies that carrier grade Linux shall provide facilities for applications to

asynchronously perform IPSec Authentication Header (AH) and Encapsulating Security

Protocol (ESP) encryption as defined in RFC 4301 and RFC 4309 when a suitable

hardware crypto engine is available.

http://www.faqs.org/rfcs/rfc4301.html
http://www.faqs.org/rfcs/rfc4309.html

GAP.33.0 ASYNCHRONOUS HARDWARE ACCELERATED CRYPTO SUPPORT:

SNOW 3G

ID PID Name

GAP.33.0 Asynchronous Hardware Accelerated Crypto Support: SNOW 3G

CGL specifies that carrier grade Linux shall provide facilities for applications to

asynchronously perform SNOW 3G cipher for both Confidentiality (UEA2) and Integrity

(UIA2) modes when a suitable hardware crypto engine is available.

GAP.34.0 ASYNCHRONOUS HARDWARE ACCELERATED CRYPTO SUPPORT:

AES

ID PID Name

GAP.34.0 Asynchronous Hardware Accelerated Crypto Support: AES

CGL specifies that carrier grade Linux provide facilities for applications to shall

asynchronously perform Advanced Encryption Standard cipher when a suitable hardware

crypto engine is available.

GAP.35.0 THREAD NAMING: DEBUGGING

ID PID Name

GAP.35.0 Thread Naming: Debugging

CGL specifies that carrier grade Linux shall provide the ability to uniquely identify threads

with a symbolic name in addition to the existing process and thread ID mechanism.

Assigned symbolic names must be able to be displayed in addition to all other

information normally presented about threads in the Gnu Debugger (GDB). It must be

possible to use symbolic names rather than thread ID to address individual threads within

GDB.

GAP.36.0 THREAD NAMING: MONITORING

ID PID Name

GAP.36.0 Thread Naming: Monitoring

CGL specifies that carrier grade Linux shall provide the ability to uniquely identify threads

with a symbolic name in addition to the existing process and thread ID mechanism.

Assigned symbolic names must be able to be displayed in addition to all other

information normally presented about threads in system status applications such as top.

GAP.37.0 PROCESS CORE DUMP FILTERING

ID PID Name

GAP.37.0 Process Core Dump Filtering

CGL specifies that carrier grade Linux shall implement custom core dump behavior for

processes. An API must be provided that will allow a process to request specialized

handling in the event that the size of a resulting core dump would exceed the system-

defined limit. If the core dump will exceed the limit, individual segments will be dumped in

the following priority order:

 1 Stack

 2 Heap

 3 Shared Memory

 4 BSS Data

 5 Initialized Data

GAP.38.0 PROCESS CORE DUMP FILTERING: COMPATIBILITY

ID PID Name

GAP.38.0 Process Core Dump Filtering: Compatibility

CGL specifies that carrier grade Linux shall implement custom core dump behaviour for

processes. The resulting core dump must be compatible with current versions of the Gnu

Debugger, GDB, even if not all segments have been included.

GAP.39.0 EFFICIENT MULTI-THREADED APPLICATION CPU USAGE

MONITORING

ID PID Name

GAP.39.0 Efficient Multi-Threaded Application CPU Usage Monitoring

CGL specifies that carrier grade Linux shall provide a summary of overall CPU usage for

highly threaded applications.

This summary will include user, system and interrupt mode execution statistics as well as

the time spent in userspace waiting for locks and time spend handling page faults for

each thread and for the containing process.

This summary must accurately reflect the usage of the system at the time the summary is

requested and gathering these statistics must not result in any noticeable performance

degradation. The mechanism must also facilitate retrieval of process time usage and

enforcement of CPU exhaustion limits in context switching code. These statistics must

not rely on periodic sampling, each state transition within a thread must be recorded for

the individual thread and for the process containing the thread.

GAP.40.0 PERSISTENT SHARED MEMORY

ID PID Name

GAP.40.0 Persistent Shared Memory

CGL specifies that carrier grade Linux shall provide a mechanism for applications to

store and retrieve critical data without depending on a locally attached disk. This

mechanism must preserve such data from system crashes and across system reboots.

GAP.41.0 COARSE RESOURCE ENFORCEMENT

ID PID Name

GAP.41.0 Coarse Resource Enforcement

CGL specifies that carrier grade Linux shall provide a mechanism that will impose

resource consumption limits on one or more threads, processes or groups of processes.

It must be possible to address individual threads, groups of threads, whole processes or

groups of processes identified by the effective or real user or group ID with which they

are running. Limits must have actions associated with them that can be selected when

the process or thread is first started. These actions must at least include:

 Log - Allow the resource overstep to continue but report it via the normal system

event reporting mechanism.

 Signal - Allow the resource overstep to continue but send a pre-defined signal to

the thread/process.

 Terminate - Do not allow the resource overstep to occur, instead terminate the

thread/process.

The resource consumption limits must be applied to at least CPU time and memory

usage.

GAP.42.0 API for Non-Uniform Memory Architectures: Domain Binding

ID PID Name

GAP.42.0 API for Non-Uniform Memory Architectures: Domain Binding

CGL specifies that carrier grade Linux shall implement the notion of a latency domain,

defined as a set of CPUs with directly attached, local memory. All systems shall have at

least one latency domain, representing a uniform memory architecture. Additional latency

domains can exist for non-uniform memory architectures, in which case carrier grade

Linux will provide an API that allows a process to bind to a specific latency domain. An

application must be able to specify the binding policy, with at least the following policies

available:

 Opportunistic - A process will only migrate to a new latency domain if it is unable

to execute in the current latency domain.

 Strict - A process will never migrate to a new latency domain even if it would

otherwise be unable to continue execution.

11. DEPRECATED REQUIREMENTS

The following sections list previous CGL requirements that have been deprecated

since they are now considered ubiquitous and essential parts of any modern

Linux distribution.

REQUIREMENTS DEPRECATED IN CGL 4.0

AVL.3 deprecated in CGL 4.0.

AVL.4 deprecated in CGL 4.0.

AVL.5 deprecated in CGL 4.0.

AVL.5.2 deprecated in CGL 4.0.

AVL.7 deprecated in CGL 4.0.

AVL.7.3 deprecated in CGL 4.0.

AVL.8 deprecated in CGL 4.0.

AVL.8.2 deprecated in CGL 4.0

AVL.11.0 deprecated in CGL 4.0.

AVL.13 deprecated in CGL 4.0.

AVL.16.0 deprecated in CGL 4.0.

AVL.19.0 deprecated in CGL 4.0.

AVL.20.0 deprecated in CGL 4.0.

CCM.2 deprecated in CGL 4.0.

CAF.2 deprecated in CGL 4.0.

CMON.1 deprecated in CGL 4.0.

CDIAG.2 deprecated in CGL.4.0.

CCM.4.0 deprecated in CGL 4.0.

CCM.4.1 deprecated in CGL 4.0.

CCM.4.2 deprecated in CGL 4.0.

CCM.4.3 deprecated in CGL 4.0.

CCON.1 deprecated in CGL 4.0.

CDIAG.1 deprecated in CGL 4.0.

PLT.1.0 deprecated in CGL 4.0.

PMT.1.0 deprecated in CGL 4.0.

PMT.1.2 deprecated in CGL 4.0.

PMT.1.4 deprecated in CGL 4.0.

PMT.2.0 deprecated in CGL 4.0.

PIC.1.0 deprecated in CGL 4.0.

PIC.1.2 deprecated in CGL 4.0.

PIC.1.4 deprecated in CGL 4.0.

PMS.2.0 deprecated in CGL 4.0.

PMS.3.0 deprecated in CGL 4.0.

PMS.3.1 deprecated in CGL 4.0.

PMS.3.2 deprecated in CGL 4.0.

PMS.3.3 deprecated in CGL 4.0.

PMS.4.0 deprecated in CGL 4.0.

PMS.5.0 deprecated in CGL 4.0.

PRF.1 deprecated in CGL 4.0

PRF.1.10 deprecated in CGL 4.0

PRF.1.12 deprecated in CGL 4.0

PRF.2 deprecated in CGL 4.0

PRF.3 deprecated in CGL 4.0

PRF.3.3 deprecated in CGL 4.0

PRF.4 deprecated in CGL 4.0

PRF.4.5 deprecated in CGL 4.0

PRF.9.0 deprecated in CGL 4.0

PRF.11 deprecated in CGL 4.0

PRF.12.0 deprecated in CGL 4.0

PRF.13.0 deprecated in CGL 4.0

SEC.1 deprecated in CGL 4.0.

SEC.2 deprecated in CGL 4.0.

SEC.3 deprecated in CGL 4.0.

SEC.4 deprecated in CGL 4.0.

SEC.5 deprecated in CGL 4.0.

SEC.6 deprecated in CGL 4.0.

SEC.7 deprecated in CGL 4.0.

SMM.3 deprecated in CGL 4.0

SMM.7 deprecated in CGL 4.0

SMM.8 deprecated in CGL 4.0

SFA.2 deprecated in CGL 4.0

SFA.11.0 deprecated in CGL 4.0

SFA.12.0 deprecated in CGL 4.0

STD.9.0 as it concerns the IPMI v1.0 level of the specification has been

deprecated in CGL

STD.10.0 as it concerns 802.1Q VLAN Bridging has been deprecated in

CGL 4.0.

STD.12.0 has been deprecated in CGL 4.0.

STD.13.0 has been deprecated in CGL 4.0.

STD.14.0 has been deprecated in CGL 4.0.

STD.14.2 has been deprecated in CGL 4.0.

STD.15.0 has been deprecated in CGL 4.0.

STD.21.0 has been deprecated in CGL 4.0.

STD.23.0 has been deprecated in CGL 4.0.

STD.24.0 has been deprecated in CGL 4.0.

REQUIREMENTS DEPRECATED IN CGL 5.0

AVL.1.0 has been deprecated in CGL 5.0.

AVL.18.0 has been deprecated in CGL 5.0.

AVL.3.1 has been deprecated in CGL 5.0.

AVL.4.2 has been deprecated in CGL 5.0.

AVL.4.3 has been deprecated in CGL 5.0.

AVL.4.4 has been deprecated in CGL 5.0.

AVL.5.1 has been deprecated in CGL 5.0.

AVL.7.2 has been deprecated in CGL 5.0.

AVL.8.3 has been deprecated in CGL 5.0.

AVL.9.1 has been deprecated in CGL 5.0.

CAF.1.0 has been deprecated in CGL 5.0.

CCM.1.0 has been deprecated in CGL 5.0.

CCM.2.1 has been deprecated in CGL 5.0.

CCM.2.3 has been deprecated in CGL 5.0.

CCM.2.4 has been deprecated in CGL 5.0.

CCM.2.5 has been deprecated in CGL 5.0.

CCM.3.0 has been deprecated in CGL 5.0.

CCON.1.1 has been deprecated in CGL 5.0.

CCON.1.2 has been deprecated in CGL 5.0.

CCON.1.3 has been deprecated in CGL 5.0.

CCON.1.4 has been deprecated in CGL 5.0.

CCS.1.0 has been deprecated in CGL 5.0.

CCS.2.0 has been deprecated in CGL 5.0.

CDIAG.1.1 has been deprecated in CGL 5.0.

CDIAG.1.2 has been deprecated in CGL 5.0.

CES.1.0 has been deprecated in CGL 5.0.

CLS.1.0 has been deprecated in CGL 5.0.

CMON.1.1 has been deprecated in CGL 5.0.

CMON.1.2 has been deprecated in CGL 5.0.

CMON.1.3 has been deprecated in CGL 5.0.

CMS.1.0 has been deprecated in CGL 5.0.

CMS.2.0 has been deprecated in CGL 5.0.

CMS.3.0 has been deprecated in CGL 5.0.

CSM.3.0 has been deprecated in CGL 5.0.

CSM.5.0 has been deprecated in CGL 5.0.

PIC.1.1 has been deprecated in CGL 5.0.

PIC.1.5 has been deprecated in CGL 5.0.

PIC.1.6 has been deprecated in CGL 5.0.

PIC.2.0 has been deprecated in CGL 5.0.

PIC.3.0 has been deprecated in CGL 5.0.

PLT.1.1 has been deprecated in CGL 5.0.

PLT.1.1-a has been deprecated in CGL 5.0.

PLT.1.1-c has been deprecated in CGL 5.0.

PLT.1.2 has been deprecated in CGL 5.0.

PLT.1.2-a has been deprecated in CGL 5.0.

PLT.1.2-c has been deprecated in CGL 5.0.

PLT.1.3 has been deprecated in CGL 5.0.

PLT.1.3-a has been deprecated in CGL 5.0.

PLT.1.3-c has been deprecated in CGL 5.0.

PMT.1.1 has been deprecated in CGL 5.0.

PMT.1.3 has been deprecated in CGL 5.0.

PRF.1.1 has been deprecated in CGL 5.0.

PRF.1.11 has been deprecated in CGL 5.0.

PRF.1.2 has been deprecated in CGL 5.0.

PRF.1.3 has been deprecated in CGL 5.0.

PRF.1.5 has been deprecated in CGL 5.0.

PRF.1.8 has been deprecated in CGL 5.0.

PRF.1.9 has been deprecated in CGL 5.0.

PRF.10.0 has been deprecated in CGL 5.0.

PRF.3.1 has been deprecated in CGL 5.0.

PRF.3.2 has been deprecated in CGL 5.0.

PRF.4.1 has been deprecated in CGL 5.0.

PRF.4.3 has been deprecated in CGL 5.0.

PRF.4.4 has been deprecated in CGL 5.0.

SFA.13.0 has been deprecated in CGL 5.0.

SFA.3.1 has been deprecated in CGL 5.0.

SFA.5.0 has been deprecated in CGL 5.0.

SFA.6.0 has been deprecated in CGL 5.0.

SFA.7.0 has been deprecated in CGL 5.0.

SFA.9.0 has been deprecated in CGL 5.0.

SMM.1.0 has been deprecated in CGL 5.0.

SMM.11.0 has been deprecated in CGL 5.0.

SMM.14.1 has been deprecated in CGL 5.0.

SMM.14.2 has been deprecated in CGL 5.0.

SMM.2.0 has been deprecated in CGL 5.0.

SMM.2.1 has been deprecated in CGL 5.0.

SMM.6.1 has been deprecated in CGL 5.0.

SPM.7.0 has been deprecated in CGL 5.0.

SPM.8.0 has been deprecated in CGL 5.0.

STD.16.0 has been deprecated in CGL 5.0.

STD.19.0 has been deprecated in CGL 5.0.

STD.2.0 has been deprecated in CGL 5.0.

STD.2.1 has been deprecated in CGL 5.0.

STD.2.2 has been deprecated in CGL 5.0.

STD.2.3 has been deprecated in CGL 5.0.

STD.22.0 has been deprecated in CGL 5.0.

STD.25.0 has been deprecated in CGL 5.0.

STD.3.2.8 has been deprecated in CGL 5.0.

STD.8.2 has been deprecated in CGL 5.0.

STD.8.3 has been deprecated in CGL 5.0.

STD.8.4 has been deprecated in CGL 5.0.

STD.8.5 has been deprecated in CGL 5.0.

STD.8.6 has been deprecated in CGL 5.0.

STD.8.7 has been deprecated in CGL 5.0.

12. REFERENCES

Background information useful to readers of this document can be found in the

following places:

 The Linux Foundation home page: http://www.linuxfoundation.org

 The Carrier Grade Linux web page: http://cgl.linuxfoundation.org

http://www.linuxfoundation.org/
http://cgl.linuxfoundation.org/

