
DEPENDENCY
CHECKER

» The Open Compliance Program

A White Paper By The Linux Foundation
http://www.linuxfoundation.org

Dependency Checker Tool
Overview and Discussion

..................
By Stew Benedict and Jeff Licquia, The Linux Foundation

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

1Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Introduction
In the past two months, the Linux Foundation has published several papers (available from http://
www.linuxfoundation.org/publications) on the topic Free and Open Source Software Compliance
in preparation of the launch of the Open Compliance Program. This paper is the fourth in the
same series and provides an overview of the Dependency Checker Tool, an open source project
initiated by the Linux Foundation as part of the Open Compliance Program, aimed at providing a
tool to support FOSS compliance due diligence activities.

The paper is divided into two main parts: The first part provides a discussion on the role of tools in
ensuring FOSS compliance with a listing of tools used in the compliance end-to-end management
process, and the second part is dedicated to the Dependency Checker Tool design and
implementation details.

Figure 1 provides a sample end-to-end compliance management process that includes the
following steps:

1. Identification: All incoming software is identified and entered into the compliance process
2. Audit: software is scanned and audited and an audit report is generated identifying origins and

licenses of source code
3. Resolve Issues: Any pending issues from the audit are worked on and resolved
4. Reviews: compliance ticket is reviewed by the compliance team
5. Approvals: compliance ticket is approved by the compliance team
6. Registration: software component is added to the inventory of approved components for use in a

specific product/version
7. Notices: all notices are compiled and sent to documentation team for publishing
8. Verifications: pre-distribution verification steps
9. Distributions: source code is published
10. Verifications: post-distribution verification steps

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

2Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Figure 1: Example of a compliance process

For the purpose of this article, we do not discuss in detail the compliance process. The goal is to
illustrate a sample process and discuss which tools are being used in which steps in the process.

Tools and Automation
Tools are an essential building block in a compliance program that can assist companies with their
compliance activities as efficiently and accurately as possible. There are a number of tools that
can be very useful in a FOSS compliance program:
•	 Project management tool
•	 Source code scanning and license identification tool
•	 Linkage analysis tool
•	 Bill of material difference tool
•	 Source code review tool
•	 Linguistic review tool

Figure 2 illustrates a sample compliance end-to-end process and displays in which phases of the
compliance process the tools are being used. In addition, the figures points out the three tools that
the Linux Foundation is initiating as open source tools to help companies with their compliance
efforts.

In the following sub-sections we describe briefly these tools and how they contribute to the
compliance activities. It is worth mentioning that there exist in the market several commercial and

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

3Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

open source tools that provide the various functionalities described below.

Figure 2: Example of tools used in compliance management

Project Management Tool
A project management tool is essential to manage and track the compliance activities. Some
companies use their bug tracking tools that are already in place with a customized compliance
workflow; other companies rely on specific project management tools or even in-house solutions.
Whatever your preference is, you would want the tool to reflect the workflow of your compliance
process, allowing you to move compliance tickets from one phase of the process to another,
providing you with task and resources management, time tracking, email notifications, project
statistic and reporting capabilities.

Bill of Material (BoM) Difference Checker
The goal of the BoM difference checker is to compute the difference between two BoM and
produce a list of changes. This will enable efficient incremental compliance on the BoM delta on
two versions of the same product.

The inputs to the BoM difference checker are two BoM files that represent the list of components
available on two different version of the product. For instance BoM_v1.0 represents version 1.0 and
BoM_v1.1 represents version 1.1. The output of the BoM difference checker would be the list of new
components, retired components, and modified components.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

4Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Source Code and License Identification Tool
The source code and license identification tool provides recognition and analysis capabilities for
both source code and binaries and assists the user of the tool in identifying the origin of the source
code and the associated licenses.

Dependency Checker Tool
The goal of the dependency checker is to flag problematic code combinations at the dynamic
and static link level. The tool identifies a linkage conflict between binaries and libraries based
on predefined license policies that the user of the tool has already defined. The Dependency
Checker Tool is discussed in full in the second half of the paper.

Software Inventory Tool
It is critical to keep track of approved software components, the products in which they
are deployed, and specific information such as version numbers, licensing and compliance
information. Such data is usually stored in a software inventory tool that maintains information
about all software components, not just FOSS assets. The software inventory tool provides
significant advantages in cases such as compliance audits or corporate mergers and
acquisitions.

Source Code Peer Review Tool
As part of the distribution process, some companies elect to review the source code changes they
applied to existing FOSS components before making the components available for download
from their web site. A source code review tool is very useful in this context to allow developers to
review the changes made to the original source code.

Code Janitor Tool
Before releasing source code to the public, companies often perform a linguistic review to make
sure that developers did not leave any comments about future products, product code names,
mention of competitors, or any inappropriate comments. The Code Janitor tool was initiated by
the Linux Foundation as an Open Source project and it allows its users to create a database of
inappropriate words (or keywords) the tool will use in a brute force scan of the code. The result is a
list of files that contains the offending “keywords.” The Code Janitor tool is available from http://git.
linuxfoundation.org/?p=janitor.git.

Binary Analysis Tool
The Binary Analysis Tool is a modular framework that assists with auditing the contents of compiled
software. It allows the discovery of software components that were used to create compiled
code. The tool supports the automated extraction of the version and configuration of BusyBox,
extraction of file system information, automated checking for the Linux kernel , and a capability
for brute force scanning of firmware. The binary analysis tool is available from http://www.
binaryanalysis.org/.

http://git.linuxfoundation.org/?p=janitor.git
http://git.linuxfoundation.org/?p=janitor.git
http://www.binaryanalysis.org/
http://www.binaryanalysis.org/

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

5Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Note
In some cases, a single tool can fulfill more than one of the roles described above.

Dependency Checker Tool
The Dependency Checker Tool is the first tool released by the Linux Foundation (under the MIT
license) as a part of the Open Compliance Program to help companies and individuals with their
compliance due diligence. Like any other open source project, the project is open (open mailing
list, open git repository, open bugzilla) and governed by open source development processes. The
tool in its initial release (discussed in a later section) provides a number of features and capabilities
that will grow with time. The tool is to be used as a platform to innovate and enable easy
compliance. Such tools provide no product differentiation for companies and our hope is that
companies, individuals, and open source developers will join the effort and contribute in building
solid tools that help everyone using open source software.

Problem Description
There are various legal opinions on how linkage methods (static versus dynamic) may or may not
affect your compliance with FOSS licenses. Companies often define policies that govern what
is acceptable from a linkage/licensing perspective. For instance, sample policies may look as
follows:

Components/binaries licensed under license A can link statically or dynamically to libraries licensed under license B.

Components/binaries licensed under license C can link dynamically only to libraries licensed under license D and E.

Components/binaries licensed under license F can not link statically or dynamically to libraries licensed under license H.

Therefore, there is a need for a tool that offers capabilities to:
1. Discover linkages occurring between a given binary and any given library
2. Discover the type of linkage (static or dynamic)Linkage analysis tool
3. Offer a license framework to allow companies to define their policies
4. Alert users anytime there is a linkage/license conflict discovered by the tool

Goal
The goal of the tool is to flag problematic code combinations at the dynamic and static link level
based on predefined linkage/license policies.

Inputs and Outputs
There are 2 major inputs to the tool:

1. Location of the root file system that you want to scan. The tool then crawls the root file system looking
for binaries and works to identify to which libraries they link and how.

2. Linkages/license policies that are defined in the tool and correspond to any specific company policies
(examples were provided earlier).

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

6Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

For any given binary, the output is the list of libraries it links to, linkage method and a flag that
illustrates if the linkage/license combination is:
•	 (Red flag) Not allowed by the defined policies
•	 (Orange flag) a new combination of linkage method and license that it not available in the defined

policies

Discovering Dynamic Linkages
The software takes either a path, or a path and a filename, as input. The path may be to a single
file or to a directory. If the path is a directory, the directory is searched recursively, either for any
ELF files or for the additional filename given. We only consider ELF files for analysis.
Once an ELF file is discovered, we find the dynamically linked libraries using an equivalent of the
command:

 readelf -a file | grep NEEDED | awk ‘{print $5}’

This gives us a list of the SONAMES of the libraries this binary depends on. If recursion is requested,
we run ldd on the original file to get the library paths, and resolve any symbolic links to the actual
file. We then repeat the sequence on each library to find its dependencies, and continue to
repeat up to the recursion level or until no more recursion is possible.

Discovering Static Linkages
First, for each ELF file found, we gather a list of all interfaces linked into it from any source, using the

equivalent of this shell command:

 readelf -s file | grep FUNC | awk ‘{ print $8 }’

Second, we read a list of all interfaces that have debugging information available. This is done
using readelf -wi and parsing the output, looking for all entries of type DW_TAG_subprogram and
storing the DW_AT_name attribute.

Once we have these two lists, we look for symbol names that appear in the first list but not in the
second list. These are functions embedded in the executable, but without debugging information.
The linking of static libraries is the most common cause for the presence of symbols like this. To
determine the actual library involved, we consult a table that contains all of the symbols in a
number of libraries.

Rather than ship an embedded (and possibly stale) table of symbols, we generate the table by
reading the symbol tables from the dynamic libraries provided on the system. Initially, the table
is empty; we provide both a command-line tool and a button in the user interface (under the
“Settings” tab) for analyzing the system and showing fresh data. We show warnings if the table is
empty when a scan is done.

This process is not as exact as the process for finding dynamic libraries. See the “Limitations”
section below for a discussion of the constraints and reliability of this method.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

7Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Using the Command Line Interface (CLI)
The command line program is called readelf.py, and it resides in /opt/ linuxfoundation/bin (or in
dep-checker/bin for a git checkout):

 ~/dep-checker/bin$./readelf.py --help
 Usage: readelf.py [options] <file/dir tree to examine> [recursion depth]
 Options:
 -c output in csv format
 -d write the output into the results database
 -s DIR directory tree to search
 --comments=COMMENTS test comments (when writing to database)
 --project=PROJECT project name (when writing to database)
 --no-static don’t look for static dependencies
 --version show program’s version number and exit

 -h, --help show this help message and exit

-c Option
The -c option is primarily used to pass data to the GUI. The format without this argument is more
human-readable if you are using the command line directly.

-d Option
The -d option forces -c style output and writes the data to the same database used by the
GUI. You can use –project and –comments to fill these fields in the test record. The username is
acquired from the environment. Using -d allows unattended test runs via cron or other means that
can be later reviewed in the GUI.

-s DIR Option
The -s option expects a directory as an argument. If you specify this option, the program will
attempt to drill down through the directory mentioned to find only files with the name specified by
the next argument to analyze:

 /opt/linuxfoundation/bin/readelf.py -s /foo bar

The program will search everything under /foo, for ELF files named bar
Specifying only a directory will search and report on every ELF file in that directory tree:

 /opt/linuxfoundation/bin/readelf.py /foo

Specifying only a file will attempt to test only the specified file:

 /opt/linuxfoundation/bin/readelf.py /foo/bar/baz

The recursion level is an optional argument, that will attempt to not only report the direct
dependencies, but also report the dependencies of each library used by the target file:

 /opt/linuxfoundation/bin/readelf.py /foo/bar/baz 4

This would attempt to recurse down 4 levels from the target file, giving output something like this:

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

8Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

 [1]/foo/bar/baz:

 libtermcap.so.2

 [2]/lib/libtermcap.so.2.0.8:

 libc.so.6

 [3]/lib/i686/libc-2.10.1.so:

 ld-linux.so.2

 [1]/foo/bar/baz:

 libdl.so.2

 [2]/lib/libdl-2.10.1.so:

 libc.so.6

 [3]/lib/i686/libc-2.10.1.so:

 ld-linux.so.2

 [2]/lib/libdl-2.10.1.so:

 ld-linux.so.2

 [1]/foo/bar/baz:

 libc.so.6

 [2]/lib/i686/libc-2.10.1.so:

 ld-linux.so.2

You will note that even though we asked for a recursion level of 4, the test stopped at level 3, as
the program detects when no further recursion is possible.
Static library dependencies will appear with (static) appended to the SONAME:

 libncurses.so.5 (static)

--comments=COMMENTS
The –comments option is used to populate the comments field in the test record when using -d. If
the comment is multiple words, it should be quoted:

 --comments=’this is a comment’

--project=PROJECT
The –project option is used to populate the project field in the test record when using -d. If the
comment is multiple words, it should be quoted:

 --project=’my FOSS project’

--no-static Option
The --no-static option suppresses trying to resolve statically linked dependencies.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

9Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

--version
The –version option reports the version of the command line program.

-h, --help
The -h, --help option returns the usage/options as listed earlier.

Overview of the Graphical User Interface
The GUI interface is simple by design with tabs to access various aspects of program:
•	 Check Dependencies Test entry, initiate form
•	 Review Results Tabular list of test results
•	 Licenses License name/version/alias entry tab
•	 License Bindings Define license bindings for targets (test files) and libraries
•	 License Policies Define linkage license policies to be flagged during testing
•	 Settings View and change settings, load/reload the static database
•	 Documentation User documentation

The final page, which isn’t visible in the tabs, is the test results detail page, brought up by either
running a test, or clicking on the link in the results page.

Check Dependencies
Figure 3 provides an illustration of the home page of the Dependency Checker Tool once
launched in a web browser. This is also known as the Check Dependencies tab.
When running the Dependency Checker for the very first time, you should start by loading the
static symbol tables. If this has not been done, the page will include a reminder to do this. See
below, under the Settings tab, for instructions on how to do this.

Once this has been done, a test sequence would typically start at the Check Dependencies
page, where you enter the test criteria. This setup parallels the operation of the command line
program, where you select whether to search for a file under a directory, test a whole directory, or
just a single file. There is also a drop-down to select the recursion level. You can disable checking
for static dependencies via a checkbox.

The user field is pre-populated with the compliance user, but can be overridden. The project and
comments fields are optional for your use in tracking tests.
Once you enter the test criteria, click on the Run Dependency Check button. After the test runs
you will be presented with the detailed test results in tabular form. Depending on the number of
files to be tested and the recursion level, the test can take a few minutes, so be patient. A status
box will replace the form on the screen to show the progression of the test.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

10Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Figure 3: Main screen of Dependency Checker

Until there are licenses and bindings defined, the results detail will show TBD for both the target and
dependency licenses. Now that there is data in the system, you can go back and define these
relationships and update the test data.

There is a Print Results button on the detail page that should open the browser print dialog to print
to a physical printer or to a file. Some parts of the GUI are hidden in the printed output so that only
the test results show up in the printed report.

Review Results
Figure 4 illustrates how users of the tool can access the test results via the Review Results page. This
is a tabular list of all the test runs, sorted by test id/date. The far-right column has the information
entered from the Check Dependencies tab. Clicking on the link for the target file or directory will
open the detail tab. If you want to delete test results, you can select the checkboxes and delete
them from here, using the Delete Selected Tests button.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

11Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Figure 4: Review results screen

Licenses
The License tab lets you enter license names, versions, abbreviations and aliases. For example, the
GNU General Public License v 2.0:
•	 Long name = GNU General Public License
•	 Abbreviation = GPL
•	 Version number = 2.0
•	 Possible aliases = GPL2.0 | GPL v2 | GPL 2 | GPL v2

You can add as many aliases as you need for any given license.
This information is needed when importing license information from a third party tool. Since we
are unaware of how the license name and version will be reported, we have the facility to define
various aliases for any given License Name / License Version combination and still link that to the
license policies. Following this approach, if we have a policy that states,

Binaries licensed under license A v1.0 can link statically or dynamically to libraries licensed under license B v2.0.

we will still be able to discover and flag the combination even if the license are imported
differently than what is stated in the policy. You can select a abbreviation/version from the system
and then provide up to 9 alternate names (aliases) that will be considered equivalent when
examining test results for policy violations. Additional aliases can be added to an existing list by
simply selecting the license, entering just the new alias and clicking “Add” again. Alias entries must
be unique, and you’ll be warned when trying to add an alias that already exists.

Figure 5 is an illustration of the License tab and shows the default open source licenses (OSI
approved) licenses that are pre-loaded by default in the tool.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

12Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Figure 5: License screen

License Bindings

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

13Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Since the module to import license information from third party tools is not available yet, we
needed a way to test the tool and the defined policy. The solution was to create a way to attach
license information to binaries and libraries. This solution, described below, is a temporary fix until
we are able to import license information attached to binaries and libraries from other tools.
The License Bindings tab illustrated in Figure 6 allows the user to define the license binding for the
target files (i.e. the files that are being tested for dependencies). The same type of bindings can
be done for the dependency libraries (i.e. the libraries linked to by the binaries).
The drop down under “Target” will show all the files captured in the target directory scanned.
The drop down under “License” will show all the licenses defined in the License tab. If there is no
test-data or no licenses, the drop-downs will be empty. If there is test data in the system, you can

update the license information for current data using the Update Target Test Data button.

Figure 6: License binding screen

The drop down under “Library” will show all libraries in the test data. The drop down under
“License” will show all the licenses defined in the License tab. The License selector does not
differentiate between static and dynamic versions; both will be treated the same. If there are no
test data or no licenses, the drop-downs will be empty. If there are test data in the system, you
can update the license information for current data using the Update Library Test Data button. The
bindings will also get updated as part of the next test run.

License Policies
The License Policies, shown in Figure 7, allow the user to define pairing of target/library licenses that
could have potential issues. You select the Target License and Library License from the drop downs
and then select the relationship, either Static, Dynamic, or both. When a test is run, violations of
these policy settings will appear in the report printed in red with a red flag after the License name.
Like the other tabs, you can select and delete policies using the check-boxes and the Delete
Selected Policies button.

If the target (file) or library is using a license naming convention that is not defined in the
application licenses tab, but has a naming convention defined as equivalent in the aliases table,
the license violation will look like:

 alias name (real name) [graphical flag]
Undefined license relationships will be flagged with orange text and an orange flag.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

14Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Figure 7: License policies screen

Settings
The Settings tab provides settings for managing the static symbol data used for detecting static
library dependencies.

The Reload Static Data button clears out any data in the static symbol tables, and loads new
data into them based on the libraries available on the system. It should be activated at least
once: when running the Dependency Checker for the first time. Both this page and the Check
Dependencies page warn you when no static symbol data is present.

If a job is being run, such as a dependency check or a symbol data reload, the status for that
job will be displayed instead of the Reload Static Data button. When the job is finished and it is
possible to reload the data again, the button will return.

By default, when loading symbol data, only libraries found in the common system paths are
considered. You can change this by adding or removing paths from the list under the Reload
Static Data button, and then clicking Save Changes. Once the paths have been changed, click
the Reload Static Data button to reload the data from the new paths.

Figure 8: Settings screen

Figure 8 shows the Settings tab as it might look when the static data is in the process of being
reloaded.

Installation

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

15Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

From Packages
The program is packaged as an rpm package, with dependencies on python-django. If your
system does not provide django, or it’s named differently, you may need to install using --nodeps:

 rpm -Uvh dep-checker-0.0.5-1.noarch.rpm --nodeps

Note: If you had to use --nodeps, then you must make sure django is installed and functional on
your system. Both the command line program and the GUI depend on django.
The installation creates a compliance user/group and should create a desktop menu entry to
launch the server and open the GUI in your web browser.

From Git
You can also checkout the project from git and run it in place:

 git clone http://git.linuxfoundation.org/dep-checker.git

 cd dep-checker

Alternately, you can get the latest tarball from the git web page by clicking on the snapshot link
in the upper right-hand part of the page. Once you have the tarball, unpack it (example, the
numbers of your download may differ):

 tar -xf dep-checker-3af829ae0cc5aba33192c000ef0365ef6bced843.tar.gz

 cd dep-checker

Create the application database and the documentation (you will need w3m to create README.
txt):

 make

Running the Tool
 Usage: dep-checker.py [options] start | stop

 Options:

 --force-root allow running as root

 --server-only don’t open a browser

 --interface=INTERFACE listen on network interface (port or ip:port)

 -h, --help show this help message and exit

Step 1
The first step in running the tool is to:

 ~/dep-checker$ make

You will see output something like this:

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

16Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

cd package && make clean

make[1]: Entering directory `/home/stew/git/dep-checker/package’

make[1]: Leaving directory `/home/stew/git/dep-checker/package’

cd compliance/media/docs && make clean

make[1]: Entering directory `/home/stew/git/dep-checker/compliance/media/docs’

rm -f index.html index.html.addons

make[1]: Leaving directory `/home/stew/git/dep-checker/compliance/media/docs’

rm -f README.txt

rm -f compliance/compliance

rm -f compliance/compliance

cd compliance && python manage.py syncdb --noinput

Creating table auth_permission

Creating table auth_group_permissions

Creating table auth_group

Creating table auth_user_user_permissions

Creating table auth_user_groups

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table django_admin_log

Creating table linkage_test

Creating table linkage_file

Creating table linkage_lib

Creating table linkage_license

Creating table linkage_aliases

Creating table linkage_liblicense

Creating table linkage_filelicense

Creating table linkage_policy

Creating table linkage_staticsymbol

Creating table linkage_staticlibsearchpath

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

17Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Creating table linkage_meta

Installing index for auth.Permission model

Installing index for auth.Group_permissions model

Installing index for auth.User_user_permissions model

Installing index for auth.User_groups model

Installing index for auth.Message model

Installing index for admin.LogEntry model

Installing index for linkage.File model

Installing index for linkage.Lib model

Installing index for linkage.StaticSymbol model

Installing index for linkage.Meta model

Installing xml fixture ‘initial_data’ from ‘/home/stew/git/dep-checker/compliance/../compliance/linkage/

fixtures’.

Installed 202 object(s) from 1 fixture(s)

cd compliance/media/docs && make

make[1]: Entering directory `/home/stew/git/dep-checker/compliance/media/docs’

./text-docs-to-html > index.html.addons

cat index.html.base index.html.addons index.html.footer > index.html

make[1]: Leaving directory `/home/stew/git/dep-checker/compliance/media/docs’

w3m -dump compliance/media/docs/index.html > README.txt

If you’ve already been using the tool, you do not want to make clean, as it will destroy your
existing data.

Step 2
The second step in running the tool is to:

 ~/dep-checker$./bin/dep-checker.py start

 Waiting for the server to start...

 Starting a web browser.

 Created a new window in existing browser session

Stopping the Server
./bin/dep-checker.py stop

Known Limitations and Areas to Improve

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

18Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Debugging Information
The process of detecting statically linked libraries has some limitations because the normal build
process does not embed any information about symbols linked from static libraries, as it does for
symbols linked from dynamic libraries. The process is therefore less about gathering the data al-
ready embedded in the application, and more about attempting to derive the data using hints in
the application that are not directly relevant to the linking process.

The process of detecting statically linked libraries assumes that no deliberate deception is being
attempted. A malicious developer could easily tweak a build to avoid detection of certain static
libraries. The process relies absolutely on the presence of debugging information. If a software pro-
vider strip out debugging information, the tool cannot detect static library usage in most released
code. Therefore, we recommend incorporating the tool at an earlier phase of the project’s life-
cycle, and verifying that debugging information is available when running the tool to ensure all
statically linked libraries are discovered.

Software Development Practices
Static library detection also relies on common developer and distribution vendor practices. De-
velopers tend to create debugging information in anything they build themselves, and to not care
about debugging information in libraries not being built by the developer. Distribution vendors
tend to ship debugging libraries for dynamic libraries only. These are trends, not absolute rules; de-
velopers and distribution vendors may change their practices for perfectly valid reasons. A com-
pliance engineer relying on this tool’s static library analysis should be familiar with the common
practices of both the company’s own developers and their preferred distribution.

Accuracy
Detection of actual libraries depends on a table of symbols that maps symbol names found to the
library the symbol comes from. Accuracy in detection depends on having high-quality data in
this table. Because of this, the tool generates the data from the system actually running the tests,
instead of shipping a canonical database that can become stale. Ideally, the tool would be run-
ning on the same system used to build the software under test. If this is not possible, the tool should
be run on a system set up to match the build system as closely as possible.

Additionally, if the development team builds static libraries of their own, those static libraries should
also be reflected in the table of symbols. Make sure that the search paths for libraries in the tool
include the directories where those libraries are installed. Either static or dynamic versions of the
libraries will work.

Recursion
Because dynamic library linkage is much more explicit, the tool reports dynamic dependencies
with high confidence. The limitation comes when using recursion, because this will often result in
an examination of libraries shipped by the distribution vendor. In many cases, the dependencies
uncovered may not be relevant to the compliance/legal status of the application under test. For

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

19Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

example, if an application dynamically links to library A on the system, and that library is shipped
by the distribution to itself link to library B for some optional functionality not used by the applica-
tion, the legal status of the application may be different than if the application linked to both
libraries A and B directly. The tool provides the mechanism to uncover such relationship through
recursion, but does not make any statement regarding the compliance status.
Further, dependencies of system libraries can change between distributions and even between
versions of the same distribution. Thus, the recursive dependencies as reported by the tool can be
different depending on which distribution the test is being run under.

Areas for Contributions
Being a first release, there are several areas that can be improved or augmented with additional
functionalities. The listing below (in random order) provides a TO DO list for the next phase of the
tool development:

•	 Plugin import license information from source code scanning tools
•	 Improve the GUI
•	 Improve detection of static linkages
•	 Improve the CLI to provide similar functionalities to those available through the GUI
•	 Improve the speed of load table of symbols
•	 Improve the speed of running the dependency checker
•	 Provide the application as a web application

Availability and Participation
•	 You can view the development source from git at http://git.linuxfoundation.org/?p=dep-checker.

git;a=summary, or check it out using standard git commands:
% git clone http://git.linuxfoundation.org/dep-checker.git

•	 To file bugs or request features, go to http://bugs.linuxfoundation.org/ (under the Compliance prod-
uct).

•	 To subscribe to the mailing list or view the archives: https://lists.linux-foundation.org/mailman/
listinfo/dep-checker-dev.

Conclusion
The Dependency Checker Tool is an Open Source project initiated by the Linux Foundation to
help companies with their compliance efforts. Please consider this article as an invitation to learn
more about the project and to consider contributing to it.

About the Authors
Stew Benedict is a Member of Technical Staff at the Linux Foundation. He previously worked as a
Distribution Developer for Mandrake/Mandriva, working on PPC/IA64 ports and various security
initiatives. Prior to that, he held several roles with an automotive parts manufacturer in Cleveland,
Ohio, and with GE Lighting as part of their Electronic Products group. He has written several Linux
and Solaris articles for Linux Journal and TechRepublic.
Jeff Licquia is a Member of Technical Staff at the Linux Foundation. Previously, he worked at Proge-
ny Linux Systems, and was the project lead for the Progeny Debian distribution. He is also a mem-
ber of the Debian project, and has contributed to several books on Linux software development.

http://git.linuxfoundation.org/?p=dep-checker.git;a=summary
http://git.linuxfoundation.org/?p=dep-checker.git;a=summary
http://git.linuxfoundation.org/dep-checker.git
http:////bugs.linuxfoundation.org/
https://lists.linux-foundation.org/mailman/listinfo/dep-checker-dev
https://lists.linux-foundation.org/mailman/listinfo/dep-checker-dev

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

20Dependency Checker Tool: Overview and Discussion

DEPENDENCY
CHECKER

Over his career, he has worked on a diverse set of problems, from industrial automation to system
administration, and on platforms ranging from MS-DOS and Ultrix to Windows and Linux.

About the Open Compliance Program
The Linux Foundation’s Open Compliance Program is the industry’s only neutral, comprehensive
software compliance initiative. By marshaling the resources of its members and leaders in the
compliance community, the Linux Foundation brings together the individuals, companies and
legal entities needed to expand the use of open source software while decreasing legal costs and
FUD. The Open Compliance Program offers comprehensive training and informational materials,
open source tools, an online community (FOSSBazaar), a best practices checklist, a rapid alert
directory of company’s compliance officers and a standard to help companies uniformly tag and
report software used in their products. The Open Compliance Program is led by experts in the
compliance industry and backed by such organizations as the Adobe, AMD, ARM Limited, Cisco
Systems, Google, HP, IBM, Intel, Motorola, NEC, Novell, Samsung, Software Freedom Law Center,
Sony Electronics and many more. More information can be found at
http://www.linuxfoundation.org/programs/legal/compliance.

The Linux Foundation promotes, protects and
standardizes Linux by providing unified resources

and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation, the
Open Compliance Program or our other initiatives
please visit us at http://www.linuxfoundation.org/.

http://www.linuxfoundation.org/

